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Preface

Dear reader,

here are the abstracts of works presented at the 31st European Workshop on Computational Geometry (Eu-
roCG 2015) held on March 15-18, 2015 in Ljubljana, Slovenia. The event was hosted by the University of
Ljubljana, Faculty of Computer and Information Science.

The EuroCG is an annual, informal workshop whose goal is to provide a forum for scientists to meet, present
their work, interact, and establish collaborations, in order to promote research in the field of Computational
Geometry. The workshop aims at providing an informal atmosphere where established and young researchers
have a possibility for a productive exchange of ideas and collaboration.

EuroCG does not have formally reviewed proceedings, although the contributions are reviewed and certain
improvements to authors are suggested by a Programme Committee. This volume contains a collection of 64
abstracts of talks presented at the workshop. The abstracts should be regarded as preprints, and therefore results
presented at EuroCG are often also submitted to peer-reviewed conferences and journals.

There were 77 submissions made to EuroCG 2015, and two of them were not considered because of their format.
Each remaining submission was reviewed by at least two members of a Programme Committee. Most of the work
of the Program Committee was done through EasyChair. The Program Committee finally decided to accept 66
papers for presentation. Since authors of two submissions were not able to present their papers the final number
of papers was 64.

Besides the contributing talks, we also had 3 invited talks, delivered by Aleš Leonardis, Kurt Mehlhorn, and
Bojan Mohar. A very short description is also included in this volume.

Such a meeting requires the effort of a lot of parties. We would like to thank the authors for submitting
their abstracts and the members of the Program Committee for their work on selecting the papers. We thank
EasyChair for making its valuable platform available for free. Next, we thank European Science Foundation
(ESF) under the EUROCORES Programme EuroGIGA for their support that lead to a substantial reduction in
the registration fees. Finally, we would like to thank the members of the Organizing Committee for their work
to make the event as smooth as possible.
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Andrej Brodnik and Sergio Cabello
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Boris Albar, Daniel Gonçalves and Kolja Knauer

Lattice 3-polytopes with six lattice points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Monica Blanco and Francisco Santos

Automatic Proofs for Formulae Enumerating Proper Polycubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Gill Barequet and Mira Shalah

Compact families of Jordan curves and convex hulls in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Colm O Dunlaing

Session 4B

New Geometric Algorithms for Staged Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Erik D. Demaine, Sándor Fekete and Arne Schmidt

Caging polygons by a Finger and a Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bahareh Banyassady, Mansoor Davoodi and Ali Mohades

Subquadratic Medial-Axis Approximation for smooth Curves in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Christian Scheffer

Adaptive analysis-suitable T-mesh refinement with linear complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Philipp Morgenstern and Daniel Peterseim

Session 5A

The Slope Number of Segment Intersection Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Udo Hoffmann

Recognizing Weighted Disk Contact Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Boris Klemz, Martin Nöllenburg and Roman Prutkin

The Complexity of the Partial Order Dimension Problem – Closing the Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Stefan Felsner, Irina-Mihaela Mustata and Martin Pergel

Session 5B

Flow Diagrams for Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Michael Horton and Stef Sijben

Homotopy Measures for Representative Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Erin Chambers, Irina Kostitsyna, Maarten Löffler and Frank Staals
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Hierarchical Compositional Representations of Structure for Computer
Vision and Robotics

Aleš Leonardis
University of Birmingham

School of Computer Science

Abstract

Modeling, learning, recognizing, and categorizing visual entities has been an area of intensive research
in the vision and robotics communities for several decades. While successful partial solutions tailored for
particular tasks and specific scenarios have appeared in recent years, more general solutions, which would be
applicable to a variety of different tasks and would scale favorably with a large number of visual entities, are yet
to be developed. Ultimately, the goal is to design and implement proper structures and mechanisms that would
enable efficient learning, inference, and, when necessary, augmentation and modifications of the acquired visual
knowledge in general scenarios. Recently, it has become increasingly clear that new approaches are needed to
tackle these problems and there have been several indications that possible solutions should be sought in the
framework of hierarchical architectures. Among various design choices related to hierarchies, compositional
hierarchies show a great promise in terms of scalability, real-time performance, efficient structured on-line
learning, shareability, and knowledge transfer. In this talk I will first present our work on compositional
hierarchies related to visual representations of 2D and 3D object shapes and then conclude with some ideas
towards generalizing the proposed approach to other visual entities and modalities.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

1



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Immersions of graphs and digraphs

Bojan Mohar
Simon Fraser University

Abstract

A graph G contains another graph H as an immersion if there is an injective mapping ι : V (H) → V (G)
and for each edge uv ∈ E(H) there is a path Puv in G joining vertices ι(u) and ι(v) such that the paths Puv

(uv ∈ E(H)) are pairwise edge-disjoint. If the paths are internally disjoint from ι(V (H)), then we speak of
a strong immersion. One can define (strong) immersions of digraphs in the same way.

Nash-Williams conjectured that graphs are well-quasi ordered for the relation of immersion containment.
The conjecture was proved by Robertson and Seymour (Graph minors XXIII. Nash-Williams’ immersion
conjecture, J. Combinatorial Theory, Ser. B 100 (2010), 181–205) for weak immersions.

Recent interest in graph and digraph immersions resulted in a variety of new discoveries. The speaker
will enlighten some of these achievements.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Computing Real Roots of Real Polynomials and its Application in
Computational Geometry

Kurt Mehlhorn
Max-Planck-Institut für Informatik

Abstract

I also discuss recent advances in the computation of real roots of real polynomials. Near optimal solutions
for the more general problem of isolating the complex roots of complex polynomials are known for quite
some time (V. Pan, 2002). The new algorithms achieve the same time complexity for a sub-problem and are
considerably simpler. I also discuss application to computational geometry, in particular, cylindrical algebraic
decomposition. The talk is based on joint work with Michael Sagraloff.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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A linear-time algorithm for the geodesic center of a simple polygon

Hee-Kap Ahn∗ Luis Barba†,‡ Prosenjit Bose† Jean-Lou De Carufel† Matias Korman§,¶

Eunjin Oh∗

Abstract

Given two points in a simple polygon P of n vertices,
its geodesic distance is the length of the shortest path
that connects them among all paths that stay within
P . The geodesic center of P is the unique point in
P that minimizes the largest geodesic distance to all
other points of P . In 1989, Pollack, Sharir and Rote
[Disc. & Comput. Geom. 89] showed an O(n log n)-
time algorithm that computes the geodesic center of
P . Since then, a longstanding question has been
whether this running time can be improved (explic-
itly posed by Mitchell [Handbook of Computational
Geometry, 2000]). In this paper we affirmatively an-
swer this question and present a linear time algorithm
to solve this problem.

1 Introduction

Given a simple polygon P with n vertices and two
points x, y in P , the geodesic path π(x, y) is the short-
est path contained in P connecting x with y. It is
well-known that π(x, y) is a polygonal chain whose
vertices (other than its endpoints) are reflex vertices
of P . The geodesic distance between x and y, de-
noted by |π(x, y)|, is the sum of the Euclidean lengths
of each segment in π(x, y). The farthest neighbor of
x ∈ P is a point whose geodesic distance to x is max-
imized. To ease the description, we assume that each
vertex of P has a unique farthest neighbor. We can
make this general position assumption using simula-
tion of simplicity [4].

Let FP (x) : P → R be the function that maps a
point x ∈ P to the distance to its farthest neighbor
(i.e., FP (x) = maxy∈P |π(x, y)|). A point cP ∈ P that
minimizes FP (x) is called the geodesic center of P .
Similarly, a point s ∈ P that maximizes FP (x) (to-

∗Department of Computer Science and Engineering,
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gether with its farthest neighbor) is called a geodesic
diametral pair and their distance is known as the
geodesic diameter.

In 1983 Hershberger and Suri [7] presented a fast
matrix search technique, one application of which is a
linear-time algorithm for computing the diameter. Up
to now, the best algorithm for computing the geodesic
center is due to Pollack, Sharir, and Rote [11] and runs
in O(n log n) time. Since then, it has been an open
problem whether the geodesic center can be computed
in linear time.

In this paper, we show how to compute the geodesic
center of P in O(n) time. Due to lack of space, proofs
have been omitted in this document. A full version
of the paper with all the omitted proofs can be found
in [1].

2 Hourglasses and Funnels

Let C ⊆ ∂P be a polygonal chain that starts
at x and follows the boundary of P clockwise un-
til reaching y. The hourglass of C, denoted by
HC , is the polygon contained in P bounded by C,
π(y, f(x)), ∂P (f(x), f(y)) and π(f(y), x). We call C
and ∂P (f(x), f(y)) the top and bottom chains of HC ,
respectively, while π(y, f(x)) and π(f(y), x) are re-
ferred to as the walls of HC . We say that the hour-
glass HC is open if its walls are vertex disjoint. Note
that open hourglasses are simple polygons and closed
ones are weakly simple. We say C is a transition chain
if f(x) 6= f(y) and neither f(x) nor f(y) are interior
vertices of C. In particular, if an edge xy of ∂P is a
transition chain, we say that it is a transition edge.

Lemma 1 [Rephrase of Lemma 3.1.3 of [2]] If C is a
transition chain of ∂P , then the hourglass HC is an
open hourglass.

Let C = (p0, . . . , pk) be a chain of ∂P and let v
be a vertex of P not in C. The funnel of v to C,
denoted by Sv(C), is the simple polygon bounded by
C, π(pk, v) and π(v, p0). See Lee and Preparata [8] or
Guibas et al. [5] for more details on funnels.

A subset R ⊂ P is geodesically convex if for every
x, y ∈ R, the path π(x, y) is contained in R. The
(farthest) Voronoi region of a vertex v of P is the
set of points R(v) = {x ∈ P : FP (x) = |π(x, v)|}
(including boundary points).

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Lemma 2 Let v be a vertex of P and let C be a
transition chain such R(v) ∩ ∂P ⊆ C and v 6∈ C.
Then, R(v) is contained in the funnel Sv(C).

3 Covering the boundary

In this section, we cover the boundary of P with sets
of consecutive vertices that share the same farthest
neighbor and edges of P whose endpoints have dis-
tinct farthest neighbors. Using a result from Hersh-
berger and Suri [7], in O(n) time we can compute the
farthest neighbor of each vertex of P . Recall that
the farthest neighbor of each vertex of P is always a
convex vertex of P [3] and is unique by our general
position assumption.

We mark the vertices of P that are farthest neigh-
bors of at least one vertex of P . Let M denote the
set of marked vertices of P . For each marked vertex v
we create its funnel Fv as follows: let u1, . . . , uk−1
be the vertices of P such that v = f(ui) and as-
sume that they appear in this order when traversing
∂P clockwise. Let u0 and uk be the neighbors of u1
and uk−1 other than u2 and uk−2, respectively. Note
that both u0u1 and uk−1uk are transition edges of P .
The funnel Fv is defined as the funnel Sv(Cv), where
Cv = (u0, . . . , uk).

For each transition edge of ∂P , we also consider its
associated hourglass. Let CP be the union of all such
hourglasses and funnels. We call CP the covering of
P into funnels and hourglasses.

Lemma 3 For any simple polygon P its covering CP
is a collection of simple polygons whose overall com-
plexity is O(n). Moreover, we can explicitly compute
CP in linear time, and it holds that

⋃
U∈CP U = P .

4 Covering the polygon with apexed triangles

An apexed triangle 4 = (a, b, c) with apex a is a trian-
gle contained in P with an associated distance func-
tion g4(x), called the apex function of 4, such that
(1) a is a vertex of P , (2) b, c ∈ ∂P , and (3) there is
a vertex w of P , called the definer of 4, such that

g4(x) =

{
−∞ if x /∈ 4
|xa|+ |π(a,w)| = |π(x,w)| if x ∈ 4

In this section, we show how to find a set of O(n)
apexed triangles of P such that the upper envelope of
their apex functions coincides with FP (x). Since the
decomposition of P into hourglasses and funnels cov-
ers P , we look at each element of CP independently.
We consider both cases independently.

Let ab be a transition edge of P such that b is the
clockwise neighbor of a along ∂P . Let Bab denote the
bottom chain of Hab after removing its endpoints. For
every vertex v that lies between f(a) and f(b) in the

bottom chain of Hab, we know that there cannot be
a vertex u of P such that f(u) = v. As proved by
Aronov et al. [2, Corollary 2.7.4], if there is a point x
on ∂P whose farthest neighbor is v, then x must lie on
the open segment (a, b). In other words, for any vertex
v of Bab such that R(v) 6= ∅, then R(v)∩∂P ⊂ ab. In
fact, not only this Voronoi region is inside Hab when
restricted to the boundary of P , but also R(v) ⊂ Hab.

The next result follows trivially from Lemma 2.

Corollary 4 Let v be a vertex of Bab. If R(v) 6= ∅,
then R(v) ⊂ Hab.

Our objective is to compute O(|Hab|) apexed trian-
gles that cover Hab, each with its distance function,
such that the upper envelope of these apex functions
coincides with FP (x) restricted to Hab where it “mat-
ters”. The same approach was already used by Pollack
et al. in [11, Section 3]. Given a segment contained in
the interior of P , they show how to compute a linear
number of apexed triangles such that FP (x) coincides
with the upper envelope of the corresponding apex
functions in the given segment.

Let Ta and Tb be the shortest path trees in Hab from
a and b, respectively. For each vertex v between f(a)
and f(b), let va and vb be the neighbors of v in the
paths π(v, a) and π(v, b), respectively. We say that a
vertex v is visible from ab if va 6= vb. For each visible
vertex v, we obtain a triangle 4v.

We further split 4v into a series of triangles with
apex at v as follows: Let u be a child of v in either Ta
or Tb. As noted by Pollack et al., v can be of three
types, either (1) u is not visible from ab (and is hence
a child of v in both Ta and Tb); or (2) u is visible from
ab, is a child of v only in Tb, and vbvu is a left turn;
or (3) u is visible from ab, is a child of v only in Ta,
and vavu is a right turn.

Let u1, . . . , uk−1 be the children of v of type (2)
sorted in clockwise order around v. Let c(v) be the
maximum distance from v to any invisible vertex in
the subtrees of Ta and Tb rooted at v; if no such vertex
exists, then c(v) = 0. Define a function dl(v) on each
vertex v of Hab in a recursive fashion as follows: If v
is invisible from ab, then dl(v) = c(v). Otherwise, let
dl(v) be the maximum of c(v) and max{dl(ui)+|uiv| :
ui is a child of v of type (2)}. Similarly we define a
symmetric function dr(v) using the children of type
(3) of v.

For each 1 ≤ i ≤ k−1, extend the segment uiv past
v until it intersects ab at a point si. Let s0 and sk be
the intersections of the extensions of vva and vvb with
the segment ab. We define then k triangles contained
in 4v as follows. For each 0 ≤ i ≤ k− 1, consider the
triangle 4(si, v, si+1) whose associated apexed (left)
function is

fi(x) = |xv|+ max
j>i
{c(v), |vuj |+ dl(uj)}.
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In a symmetric manner, we define a set of apexed
triangles induced by the type (3) children of v and
their respective apexed (right) functions.

Let g1, . . . , gr and 41, . . . ,4r respectively be an
enumeration of all the generated apex functions and
triangles such that gi is defined in the triangle 4i.
Note that for each 1 ≤ i ≤ r, the triangle 4i has
two vertices on the segment ab and a third vertex,
say ai, called its apex such that for each x ∈ 4i,
gi(x) = |π(x,wi)| for some vertex wi of Hab. We refer
to wi as the definer of 4i. Intuitively, 4i defines a
portion of the geodesic distance function from wi in a
constant complexity region.

Lemma 5 Given a transition edge ab of P , we can
compute a set Aab of O(|Hab|) apexed triangles in
O(|Hab|) time with the property that for any point p ∈
P such that f(p) ∈ Bab, there is an apexed function
g such that g(p) = FP (p).

Inside the funnels of marked vertices

For each marked vertex v ∈ M we have constructed
the funnel Sv(Cv) such that v is the farthest neighbor
of all vertices of Cv other than its endpoints. We
call Cv = (u0, . . . , uk) the main chain of Sv(Cv) while
π(uk, v) and π(v, u0) are referred to as the walls of
the funnel.

Lemma 6 Let x ∈ P such that f(x) = v for some
marked vertex v ∈ M . Then, it holds that x ∈
Sv(Cv).

As with the hourglass case, we need to split a funnel
into O(|Sv(Cv)|) apexed triangles that encode the dis-
tance function from v. To this end, we compute the
shortest path tree Tv of v in Sv(Cv) in O(|Sv(Cv)|)
time [6]. We consider the tree Tv to be rooted at v
and assume that for each node u of this tree we have
stored the geodesic distance |π(u, v)|.

Start an Eulerian tour from v walking in a clockwise
order of the edges. Let Let w1 be the first leaf of Tv
found, and let w2 and w3 be the next two vertices
visited in the traversal. Two cases arise:

Case 1: w1, w2, w3 makes a right turn. We define
s as the first point hit by the ray apexed at w2 that
shoots in the direction opposite to w3. In this case,
we construct the apexed triangle 4(w2, w1, s) apexed
at w2 with apex function g(x) = |xw2| + |π(w2, v)|.
We modify tree Tv by removing the edge w1w2 and
replacing the edge w3w2 by the edge w3s.

Case 2: w1, w2, w3 makes a left turn and w1

and w3 are adjacent, then if w1 and w3 lie on the
same edge of ∂P , we construct an apexed trian-
gle 4(w2, w1, w3) apexed at w2 with apex function
g(x) = |xw2| + |π(w2, v)|. Otherwise, let s be the
first point of the boundary of Sv(Cv) hit by the ray
shooting from w3 in the direction opposite to w2. We

construct an apexed triangle 4(w2, w1, s) apexed at
w2 with apex function g(x) = |xw2| + |π(w2, v)|. We
modify the tree Tv by removing the edge w1w2 and
adding the edge w3s.

Lemma 7 The above procedure runs in O(|Sv(Cv)|)
time and computes O(|Sv(Cv)|) interior disjoint
apexed triangles such that their union covers Sv(Cv).
Moreover, for each point x ∈ R(v) there is apex func-
tion g(x) such that g(x) = FP (x).

5 Prune and search

With the tools introduced in the previous sections, we
can proceed to give the prune and search algorithm
to compute the geodesic center. The idea of the algo-
rithm is to partition P into O(1) cells, determine on
which cell of P the center lies and recurse on that cell
as a new subproblem with smaller complexity.

Let τ be the set all apexed triangles computed in
previous sections. Lemmas 5 and 7 directly provide a
O(n) bound on the complexity of τ .

Let φ(x) be the upper envelope of the apex func-
tions of every triangle in τ (i.e., φ(x) = max{gi(x) :
gi(x) ∈ τ, x ∈ 4i}). Lemmas 5 and 7 imply that
the O(n) apexed triangles of τ not only cover P , but
their apex functions suffice to reconstruct the function
FP (x). That is, for each p ∈ P , φ(p) = FP (p).

Given a chord C of P , a half-polygon of P is one
of the two simple polygons in which C splits P . A
4-cell of P is a simple polygon obtained as the in-
tersection of at most four half-polygons. Because a
4-cell is the intersection of geodesically convex sets, it
is also geodesically convex.

Let R be a 4-cell of P and let τR be the set of
apexed triangles of τ that intersect R. Let mR =
max{|R|, |τR|}. Recall that, by construction of the
apexed triangles, for each triangle of τR at least one
and at most two of its boundary segments is a chord
of P . Let C be the set containing all chords that
belong to the boundary of a triangle of τR. Therefore,
|τR| ≤ |C| ≤ 2|τR|.

To construct an ε-net of C, we need some definitions
(for more information on ε-nets refer to [9]). Let ϕ
be the set of all open 4-cells of P . For each t ∈ ϕ, let
Ct = {C ∈ C : C ∩ t 6= ∅} be the set of chords of C
induced by t. Finally, let ϕC = {Ct : t ∈ ϕ} be the
family of subsets of C induced by ϕ.

Let ε > 0 (the exact value of ε will be specified
later). Consider the range space (C, ϕC) defined by
C and ϕC . Because the VC-dimension of this range
space is finite, we can compute an ε-net N of (C, ϕC)
in O(n) time [9]. The size of N is O( 1

ε log 1
ε ) = O(1)

and its main property is that any 4-cell that does
not intersect a chord of N will intersect at most ε|C|
chords of C.
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Observe that N partitions R into O(1) sub-
polygons (not necessarily 4-cells). We further refine
this partition by performing a 4-cell decomposition.
That is, we shoot vertical rays up and down from
each endpoint of N , and from the intersection point
of any two segments of N . Overall, this partitions R
into O(1) 4-cells such that each either (i) is a con-
vex polygon contained in P of at most four vertices,
or otherwise (ii) contains some chain of ∂P . Since
|N | = O(1), the whole decomposition can be com-
puted in O(mR) time.

In order to determine which 4-cell contains the
geodesic center of P , we extend each edge of a 4-cell
to a chord C. We then use the chord-oracle from Pol-
lack et al. [11, Section 3] to decide which side of C
contains cP . Since this oracle runs in time propor-
tional to the number of functions defined on C, we
can decide in total O(mR) time on which side of C
the geodesic center of P lies. Since our decomposi-
tion into 4-cells has constant complexity, O(1) calls
are needed to determine the 4-cell R′ containing the
geodesic center of P . Since N is a ε-net, we know that
at most ε|C| chords of C will intersect R′.

Using a similar argument, we can show that the
complexity of R′ also decreases: each vertex of R′

must be in at least one apexed triangle of τR. By
construction, each apexed triangle can cover at most
three vertices. By the pigeonhole principle we con-
clude that R′ can have at most 6εmR vertices. Thus,
if we choose ε = 1/12, we guarantee that both the size
of the 4-cell R′ and the number of apexed triangles in
τR′ are at most mR/2.

We proceed recursively on R′, and obtain that after
O(logmR) iterations, we reduce the size of either τR
or R′ to constant. In the former case, the minimum
of FP (x) can be found by explicitly constructing func-
tion φ in O(1) time. In the latter case, we triangulate
R′ and apply the chord-oracle to determine which tri-
angle will contain cP .

Thus, in order to complete the algorithm it remains
to show how to find the geodesic center of P for the
case in which R′ is a triangle. Recall that φ(x) de-
notes the upper envelope of the apex functions of the
triangles in τ , and the geodesic center is the point that
minimizes φ. The key observation is that, as it hap-
pened with chords, the function φ(x) restricted to R′

is convex. Following the approach of Meggido [10], we
transform our problem into an equivalent optimiza-
tion problem in R3 (by lifting the apexed functions).

We use a prune and search approach similar to the
previous one: pair the functions arbitrarily, and con-
sider the set of m/2 bisectors defined by these pairs.
For some constant r, compute a 1/r-cutting, and de-
termine in which of the regions contains the minimum.
At least (r−1)m/2r separating planes do not intersect
this constant size region, and for each of them we can
discard one of the constraints. The main difficulty is

that apex functions are only defined in a triangular
domain. In particular, the bisector between two such
functions is not properly defined. Details are omitted.

The following theorem summarizes the results pre-
sented in this paper.

Theorem 8 We can compute the geodesic center of
any simple polygon P of n vertices in O(n) time.
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[9] J. Matoušek. Construction of epsilon nets. In
Proc. of SoCG, pages 1–10, New York, 1989.

[10] N. Megiddo. On the ball spanned by balls. Dis-
crete & Computational Geometry, 4(1):605–610,
1989.

[11] R. Pollack, M. Sharir, and G. Rote. Computing
the geodesic center of a simple polygon. Discrete
& Computational Geometry, 4(1):611–626, 1989.

7



EuroCG 2015, Ljubljana, Slovenia, Marh 16{18, 2015

Computing the s-kernel of Orthogonal Polygons∗

Leonidas Palios

†

Abstract

Two points p, q of an orthogonal polygon P are s-vi-
sible from one another if there exists a stairase path

(i.e., an x- and y-monotone hain of horizontal and

vertial line segments) from p to q that lies in P . The

s-kernel of P is the (possibly empty) set of points of

P from whih all points of P are s-visible.

We are interested in the problem of omputing the

s-kernel of a given orthogonal polygon (on n verties)

possibly with holes. The problem has been onsidered

by Gewali [1℄ who desribed an O(n)-time algorithm

for orthogonal polygons without holes and an O(n2)-
time algorithm for orthogonal polygons with holes.

The problem is a speial ase of the problem onsi-

dered by Shuierer and Wood [3℄, whose work implies

an O(n)-time algorithm for orthogonal polygons with-

out holes and an O(n log n + h2)-time algorithm for

orthogonal polygons with h ≥ 1 holes.

In this paper, we give a simple output-sensitive al-

gorithm for the problem. For an n-vertex orthogonal

polygon P that has h holes, our algorithm runs in

O(n + h logh + k) time where k = O(1 + h2) is the

number of onneted omponents of the s-kernel of P .

Moreover, a modi�ed version of our algorithm enables

us to ompute the number k of onneted omponents

of the s-kernel in O(n + h log h) time.

1 Introduction

A polygon is orthogonal if its edges are either hori-

zontal or vertial; an edge e of suh a polygon is a

N-edge (S-edge, E-edge, and W-edge, resp.) if the

outward-pointing normal vetor to e is direted to-

wards the North (South, East, and West, resp.); see

Figure 1(left). Of partiular importane are the dents,

i.e., edges whose endpoints are reex verties of the

polygon, haraterized as N-dents, S-dents, E-dents,

and W-dents (see Figure 1(left)); the dents are a mea-

sure of non-onvexity of an orthogonal polygon.

A set of points is x-monotone (y-monotone, resp.)

∗
This researh has been o-�naned by the European

Union (European Soial Fund - ESF) and Greek national

funds through the Operational Program \Eduation and Life-

long Learning" of the National Strategi Referene Framework

(NSRF) - Researh Funding Program: THALIS UOA (MIS

375891) - Investing in knowledge soiety through the European

Soial Fund.

†
Department of Computer Siene and Engineering, Univer-
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Figure 1: (left) Illustration of the main de�nitions

(the portions of the polygon not s-visible from p are

shown dark); (right) the s-star of p with its s-kernel
shown darker.

if its intersetion with any line perpendiular to the

x-axis (y-axis, resp.) is a onneted set. A stairase

path is a hain of horizontal and vertial segments

that is both x- and y-monotone. Then, two points

p, q of an orthogonal polygon P are s-visible from one

another if there exists a stairase path from p to q
that lies in P (see Figure 1(left)). The s-kernel of P
is the (possibly empty) set of points of P from whih

all points of P are s-visible. An orthogonal polygon

is an s-star if it has non-empty s-kernel. Note that

an s-star may have holes (see Figure 1(right)).

Visibility problems are losely related to reahabi-

lity and to overing problems. The s-kernel of a poly-
gon is the set of points from whih all other points

of the polygon an be reahed by means of x- and
y-monotone paths. So, if a robot restrited to move

parallel to the oordinate axes \guards" a point p in

an orthogonal polygon provided that it an get to p
along a monotone path, then the polygons that an be

\guarded" are those with non-empty s-kernel. Addi-
tionally, beause the s-stars may be highly non-onvex

(see Figure 1(right)), a minimum over of an orthogo-

nal polygon using s-stars (see [2℄ for an algorithm) is

expeted to involve a smaller number of piees om-

pared to other minimum overs.

Gewali [1℄ has onsidered the problem of omputing

the s-kernel of an orthogonal polygon; he desribed an
O(n)-time algorithm for an n-vertex orthogonal poly-

gon without holes and an O(n2)-time algorithm for

orthogonal polygons with holes. Gewali also showed

that the latter algorithm is worst-ase optimal sine

the s-kernel of an orthogonal polygon with holes may

be of Θ(n2) size, and used it to give an O(n log n)-
time algorithm for reognizing whether an orthogonal

This is an extended abstrat of a presentation given at EuroCG 2015. It has been made publi for the bene�t of the ommunity and should be onsidered a

preprint rather than a formally reviewed paper. Thus, this work is expeted to appear in a onferene with formal proeedings and/or in a journal.
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Figure 2: Illustration of the notation for a hole H (the

subhain ϑHNE is point q; no ϑHWW , ϑHSS exist).

polygon with holes is an s-star. Shuierer and Wood

[3℄ studied the notion of O-visibility, that is, visibility

along a set O of orientations and gave an O(n log |O|)-
time and an O(n(log |O| + log n) + h(|O| + h))-time

algorithm for the omputation of the O-kernel of a

simple polygon and of a polygon with h holes, re-

spetively. Their algorithms imply O(n)-time and

O(n log n + h2)-time algorithms for the s-kernel of a
simple orthogonal polygon and of an orthogonal poly-

gon with h ≥ 1 holes, respetively.

In this paper, we present a simple output-sensitive

O(n + h logh + k)-time and O(n)-spae algorithm for

omputing the s-kernel of an orthogonal polygon hav-

ing n verties, h ≥ 0 holes, and an s-kernel onsisting
of k = O(1 + h2) onneted omponents. The algo-

rithm also enables us to ount the number k of on-

neted omponents of the s-kernel of suh a polygon

in O(n + h log h) time using O(n) spae (i.e., without
omputing the s-kernel), and thus we an determine

if an orthogonal polygon is an s-star in the same time

and spae omplexity.

2 Theoretical Framework

For an edge e of an orthogonal polygon P , let De be

a small enough disk entered at the midpoint of e;
we de�ne the in-halfplane of e as the losed halfplane

that is de�ned by the line supporting e and ontains

De∩P . An orthogonal polygon is orthogonally onvex

if it is both x-monotone and y-monotone. It easily

follows that a polygon is orthogonally onvex if and

only if it has no dents.

Notation: Let D be an orthogonal polygon or a hole

in an orthogonal polygon. Then, we de�ne:

ϑD : the boundary of D;

BBox(D) : the smallest axis-parallel retangle on-

taining D.

Additionally, for a hole H , we have:

S=(H) : the smallest open horizontal strip on-

taining the interior of H ;

PSfrag replaements

QSW (H)

S-dent

S-dent

W-dent

p

q q′

H

H

H

Figure 3: For Lemma1(ii): if ϑHNW ontains a S-dent

or an W-dent, then no point of the quadrant QSW (H)
belongs to the s-kernel of P .

S||(H) : the smallest open vertial strip ontain-

ing the interior of H ;

QNW (H) : the losed quadrant that is the omple-

ment of the union of the interiors of the in-

halfplanes of the top and left edges of the ret-

angle BBox(H) (see Figure 2) | similarly, we

de�ne QNE(H), QSW (H), and QSE(H);

ϑHNW : the part of the boundary of H in oun-

terlokwise diretion from the leftmost among

the points of H with maximum y-oordinate to

the topmost among the points of H with mini-

mum x-oordinate (see Figure 2) | similarly, we

de�ne ϑHNE , ϑHSW , and ϑHSE ;

ϑHNN : let p, q be the leftmost and rightmost,

resp., verties of H with maximum y-oordinate;
if p, q are adjaent in H then no ϑHNN exists;

otherwise, if p′
(q′

, resp.) is the other endpoint

of the horizontal edge inident on p (q, resp.),
ϑHNN is the part of the boundary of H onnet-

ing p′
and q′

after the edges pp′
and qq′

have

been removed (see Figure 2) | similarly, we de-

�ne ϑHWW , ϑHSS , and ϑHEE .

The following lemma provides important properties

of the s-kernel of orthogonal polygons with holes.

Lemma 1 Let H be a hole of an orthogonal poly-

gon P . Then:

(i) No point of the strips S=(H) and S||(H) belongs
to the s-kernel of P .

(ii) If ϑHNW is not a single point, then no point of

the quadrant QSE(H) belongs to the s-kernel of
P . Moreover:

if ϑHNW ontains a S-dent or an W-dent, then

no point of the quadrant QSW (H) belongs to the

s-kernel of P ;

9
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if ϑHNW ontains a N-dent or an E-dent, then

no point of the quadrant QNE(H) belongs to the

s-kernel of P ;

if ϑHNW ontains a N-dent or an W-dent, then

no point of the quadrant QNW (H) belongs to the
s-kernel of P .

Similar results hold for the boundary subhains

ϑHNE , ϑHSW , and ϑHSE .

(iii) If the boundary of H ontains a subhain ϑHNN ,

then no point of the quadrants QSW (H) ∪
QSE(H) belongs to the s-kernel of P . Moreover:

if ϑHNN ontains a N-dent or an E-dent, then

no point of the quadrant QNE(H) belongs to the

s-kernel of P ;

if ϑHNN ontains a N-dent or an W-dent, then

no point of the quadrant QNW (H) belongs to the
s-kernel of P .

Similar results hold for the boundary subhains

ϑHWW , ϑHSS , and ϑHEE .

The above lemma implies that for a hole H of the

given orthogonal polygon P , points of the s-kernel of
P belong to all, some, or none of the four quadrants

QNW (H), QNE(H), QSW (H), and QSE(H).
The algorithm of Gewali [1℄ omputes the s-kernel

of a simple orthogonal polygon P by interseting P
with the in-halfplanes of the lowermost N-dent, the

rightmost W-dent, the topmost S-dent, and the left-

most E-dent. This implies the following result.

Lemma 2 Let P be an orthogonal polygon without

holes that has n verties. The s-kernel of P is an

orthogonally onvex orthogonal polygon of O(n) size.

3 Computing the s-Kernel

Let P be an orthogonal polygon. As in [3℄, we om-

pute the s-kernel A of P ignoring the holes in P , whih

we interset with the external s-kernel of eah of P 's

holes. In order to ompute the external s-kernel of
a hole, we proess it determining its horizontal and

vertial strips and quadrants not ontaining points of

the s-kernel of P (as desribed in Lemma 1); then,

the intersetion of their external s-kernels is the om-

plement of the union of the olleted strips and quad-

rants. Note that in order to get a fast algorithm,

we do not interset the omplements of the horizontal

and vertial strips; instead, we proess eah horizontal

strip I ontaining points of the s-kernel and determine

the s-kernel omponents (if any) in I taking into a-

ount the vertial strips. A detailed desription of the

algorithm is given in Algorithm s-Kernel below.

The orretness of Algorithm s-Kernel follows

from Lemma 1 and the fat that the s-kernel of P
is indeed the intersetion of polygon A (see Step 1)

with the omplement of the union of the olleted

strips and quadrants from the holes of P .

Algorithm s-Kernel(P )

Input : an orthogonal polygon P possibly with holes

Output : the s-kernel of P

1. ompute the s-kernel A of the orthogonal polygon

bounded only by P 's outer boundary omponent;

if P has no holes

then return A as the s-kernel of P ;

exit;

let xmin, xmax, ymin, ymax be the extreme values

of x- and y-oordinates of the bounding retangle
BBox(A) of A;

2. proess the holes of P to determine the (open)

strips and (losed) quadrants that do not on-

tain points of the s-kernel of P (see Lemma 1);

if all 4 quadrants QNW (H), QNE(H), QSW (H),
QSE(H) of a hole H do not ontain points of

the s-kernel of P
then print(\The s-kernel of P is empty.");

exit;

let C|| (C=, CQ, resp.) be the set of vertial strips

(horizontal strips, quadrants, resp.) not ontain-

ing points of the s-kernel of P ;

3. {proess the strips in C|| and C=}
ompute the union of the vertial strips in C||,
lip it about the range [xmin, xmax], and store

it in an x-ordered array M|| of alternating losed

\in"-strips (ontaining points of the s-kernel) and
open \out"-strips (not ontaining points of the s-
kernel);

work similarly for the horizontal strips in C= u-

sing the range [ymin, ymax];

4. {proess the quadrants in CQ}
ompute the union UQ of all the quadrants in CQ,

and lip its omplement about the boundary of

the polygon A omputed in Step 1;

5. for eah polygon Bj in the lipped omplement

of UQ in y-order do

for eah horizontal \in"-strip I interseting

Bj in y-order do

ompute the boundary ϑBj(I) = ϑBj ∩I;
loate a leftmost point of ϑBj(I) in the

vertial strips array M||;
walk on ϑBj(I) and in M|| until a right-

most point of ϑBj(I) is found, printing
eah polygon (if any) ontributed by

Bj ∩ I and eah \in"-strip of M||;

(Note that the lipped omplement of the union UQ

at the ompletion of Step 4 does not ontain its entire

boundary; it ontains the edges that resulted from the

lipping about A but it does not ontain the edges

that resulted from the quadrants in CQ.)

10



31st European Workshop on Computational Geometry, 2015

Time and Spae Complexity. Let n and h be

the number of verties and holes of the input ortho-

gonal polygon P . We prove the following lemma.

Lemma 3 (i) Eah haline bounding a quadrant in

CQ ontributes at most one edge to the polygons

forming the omplement of the union UQ of all

the quadrants in CQ.

(ii) The lipped omplement of UQ omputed upon

ompletion of Step 4 onsists of O(h) horizontal-
ly and vertially separated (i.e., no horizontal or

vertial line intersets two of them) orthogonally

onvex orthogonal polygons of O(n) total size.

The omputation of the s-kernel in Step 1 takes

O(n) time [1℄ and so does the entire Step 1. Step 2

takes O(n) time as well by traversing the boundary

of eah of the h holes of P and applying Lemma 1.

The proessing of the h vertial strips in C|| in Step 3

an be ompleted in O(h log h) time by sorting them

by non-dereasing left side and then proessing them

from left to right; similarly, the proessing of the hor-

izontal strips in C= takes O(h log h) time. In Step 4,

we sort the quadrants in y-order in O(h log h) time

and ompute the right-bounding line of the union of

quadrants QNW (Hi) and QSW (Hi′) in CQ and the

left-bounding line of the union of quadrants QNE(Hi)
and QSE(Hi′ ) in O(h) time. The omplement of these

unions is lipped about polygon A and by traversing

their boundaries from top to bottom we ompute the

lipped omplement of UQ in O(n) time. In total,

Step 4 takes O(n+h log h) time. For Step 5, let tj be

the number of horizontal \in"-strips interseting poly-

gon Bj . Beause the polygons in the lipped omple-

ment of UQ are horizontally separated (Lemma 3(ii)),

then any other polygon may be interseted only by the

topmost or bottommost of these tj \in"-strips. Then,

the number of pairs of polygons and \in"-strips on-

sidered is

∑
j tj =

∑
j 2+

∑
j(tj −2) = O(h) sine the

numbers of polygons and \in"-strips are both O(h).
Thus, if the s-kernel of P has k onn. omponents,

Step 5 takes O(n + h log h + k) time by using binary

searh for loating leftmost points. Therefore:

Theorem 4 Let P be an orthogonal polygon having

n verties and h = O(n) holes. Algorithm s-Kernel
omputes the s-kernel of P in O(n + h log h + k) time

using O(n) spae where k is the number of onneted

omponents of the s-kernel of P .

4 Number of Components of the s-Kernel

Algorithm s-Kernel an be modi�ed to help us om-

pute the number k = O(1 + h2) of onneted ompo-

nents of the s-kernel of a given orthogonal polygon P ;

it suÆes to modify Step 1 so that if P has no holes

it returns 0 if A is empty and 1 otherwise, Step 2 to

return 0 if the s-kernel is found empty, and Step 5 as

follows: for eah polygon Bj and eah horizontal \in"-

strip I interseting Bj, we ompute a leftmost point a
and a rightmost point z of the boundary of Bj in I,
and loate them in the vertial strips array M||; then,
depending on the indies of the strips to whih a, z
belong and whether they are \in"- or \out"-strips, we

ompute the number κ(Bj , I) of \in"-strips (if any)

between (and inluding) the strips of a and of z. The
total number of omponents of the s-kernel of P is

the sum of all the omputed κ(Bj , I).
The orretness of the modi�ed algorithm follows

immediately from the fat that for eah polygon Bj

and eah horizontal \in"-strip I, eah\in"-strip be-

tween (and inluding) a and z ontributes a separate

omponent to the s-kernel of P . The omplexity ana-

lysis of Step 5 of Algorithm s-Kernel and the fat

that κ(Bj , I) an be omputed in onstant time imply

that the modi�ed Step 5 takes O(n + h logh) time.

The modi�ed algorithm readily implies an algorith-

m to reognize whether a polygon P is an s-star (i.e.,
its s-kernel onsists of at least 1 omponent) or not.

A simpler version that does not ompute the num-

ber k of omponents simply heks in Step 5 whether

a, z fall in the same vertial \out"-strip of M||; if they
don't, then there exists a point in Bj ∩ I belonging

to the s-kernel of P and hene P is an s-star (the

algorithm an be augmented to return suh a point

as a erti�ate of its deision). If the above ondi-

tion for a, z does not hold for all polygons Bj and

\in"-strips I, then P is not an s-star. In summary:

Theorem 5 Let P be an orthogonal polygon having

n verties and h = O(n) holes. The desribed modi-

�ed algorithm omputes the number of onn. ompo-

nents of the s-kernel of P in O(n+h log h) time using

O(n) spae. Moreover, it an be deided whether P
is an s-star in the same time and spae omplexity.

5 Open Problems

We leave as open problems the study of the omplex-

ity status of the s-star reognition problem (i.e., an

there be an algorithm running in o(n + h log h) time

or is there an Ω(n + h log h) lower bound?) and of

extensions of the problem to 3-dimensional spae.
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Optimizing an oriented convex hull with two directions

Carlos Alegŕıa-Galicia ∗ David Orden † Carlos Seara ‡ Jorge Urrutia §

Abstract

Given a set P of n points in the plane in general
position, we generalize the rectilinear convex hull
of P , RH(P ), to the O2

β-convex hull of P , denoted

byO2
βH(P ), where the directions of two oriented lines,

used as coordinate axes, form an angle β ∈ [0, π]. We
show: (i) How this hull can be computed and main-
tained while β changes in [0, π], and (ii) How to de-
termine the angle β for which O2

βH(P ) maximizes its
area or minimizes its perimeter. Our algorithms run
in optimal Θ(n log n) time and O(n) space.

1 Introduction

All the point sets P considered in this paper will be
assumed in general position and such that no two el-
ements of P lie on a horizontal line. Let Ok be a set
of k lines in the plane through a common point. A
region R in the plane is called Ok-convex if its inter-
section with any line parallel to one in Ok is either
empty or connected, see [4, 7].

Ottmann et al. [5] consider k = 2 with horizontal
and vertical lines, showing how to compute the so-
called rectilinear convex hull of P , denoted byRH(P ),
in optimal Θ(n log n) time and O(n) space. Rotating
the set of two lines makes RH(P ) change and the
rotation for which RH(P ) has minimum area was ob-
tained in [1], in optimal Θ(n log n) time and O(n)
space. See [2] for a generalization.

Here we also consider the case k = 2, with a set O2

composed of a horizontal line (oriented from left to
right) and a second line (oriented from bottom to
top) forming an angle β with the horizontal, see Fig-
ure 1 (left). Hence, we may denote O2 as O2

β .
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Following Ottmann [5], we define the O2
β-convex

hull of a point set P as the intersection of all the con-
nected supersets of P which are O2

β-convex, see Fig-

ure 1 (right). The O2
β-convex hull of a point set P will

be denoted as O2
βH(P ). In this paper we show algo-

rithms for: (i) Computing and maintaining O2
βH(P )

while β changes in [0, π], and (ii) finding an angle
β ∈ [0, π] such that the area of O2

βH(P ) is maximized

or the (non-zero) perimeter of O2
βH(P ) is minimized.

Our algorithms run in Θ(n log n) time andO(n) space.

top-righttop-left

bottom-left bottom-right

β

β

p

Figure 1: left: Example of O2. right: Example
of O2

βH(P ).

Let D = {0, β, π, π + β}. Consider two consecu-
tive elements o1 and o2 in D, in the counterclock-
wise order, and a point p on the plane. The stabbing
O2
β-wedge associated to o1, o2 with apex p is the open

region bounded between two rays emanating from p
with orientations o1 and o2, respectively. Note that
every point p in the plane is the apex of four stab-
bing O2

β-wedges; top-left, top-right, bottom left, and
bottom-right. See Figure 1 (left).

Proposition 1 ([2]) LetW be the set of all stabbing
O2
β-wedges of the plane containing no elements of P .

The O2
β-convex hull of P is O2

βH(P ) = R2 −
⋃

w∈W
w.

2 Computing and maintaining O2
βH(P )

Based on Proposition 1, in order to compute O2
βH(P )

we focus on the maximal stabbing O2
β-wedges contain-

ing no elements of P .
Moreover, for a point set P and a pair of lines O2

β

we define four staircase polygonal lines, as follows:
The top-right β-staircase is the following sector of the
boundary of the region obtained by removing from

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the plane all the top-right O2
β-wedges containing no

element of P : It starts at the top element of P and
ends at the element of P which is the rightmost one
with respect to the non-horizontal line in O2

β . In a
similar way we can define the top-left, bottom-left,
and the bottom-right β-staircases of P .

In the sample O2
β-hull of Figure 1, the dotted lines

are the directions of the oriented lines in O2
β that

are used as coordinate axes. Notice that the top-
left β-staircase is just a point, and that O2

βH(P ) is
disconnected because of the intersections (the regions
bounded by dashed lines) between the top-right and
bottom-left β-staircases.

2.1 Maintaining the top-right staircase of P

We now show how to construct and maintain the top-
right β-staircase of P as the angle β runs from 0 to π.
Start by sorting, in O(n log n) time, the n points of P
from bottom to top, and relabel and place them in
this order in a list L = {p1, . . . , pn}.

For each pi, i = 2, . . . , n − 1, compute the angles
αa
i , α

b
i , αc

i , and αd
i as shown in Figure 2. Note that

for p1 and pn only two of these angles are defined. All
these angles can be computed in O(n) time. Notice
that for an small enough initial value of β, all the
elements of P belong to the top-right β-staircase of P
and therefore, O2

βH(P ) = P .

αdi
αai

αbi

αci

pi

pi−1

pi+1

αbi+1
αci+1

αdi−1
αai−1

Figure 2: The four angles αa
i , α

b
i , αc

i , and αd
i for the

point pi of P .

We observe next that, as the value of β increases,
the first element of L to drop from the list is the pi
with the smallest angle αdi . Thus, when β reaches αdi ,
pi leaves L. Since pi is no longer considered, we must
update the angle of the predecessor pi−1 of pi in L
to be the angle between the horizontal line through
pi−1 and the segment joining pi−1 to pi+1. In a re-
cursive way, if we have removed several elements of L,
the next element pj to be eliminated is that with the
smallest αdj . This can be obtained in logarithmic time
using a priority queue. See Figure 3.

Hence, the total time complexity of calculating and
maintaining the top-right β-staircase of P as β in-
creases from 0 to π is O(n log n) and using linear

pi

pi−1

pi+1

β3

αdi

β2β1

β1

Figure 3: Portion of the top-right staircase for three
values of β, before, at, and after the event β = αd

i .

space. At the end, when β = π, the only element
remaining in L is the top point pn.

The top-left, bottom-left, and the bottom-right β-
staircases of P can be computed and maintained in
a similar way. The four β-staircases of P can be
maintained simultaneously, as β goes from 0 to π,
in O(n log n) time and O(n) space.

Lemma 1 O2
βH(P ) for β ∈ [0, π] can be maintained

for β ∈ [0, π] in O(n log n) time and O(n) space.

Proof. In order to maintain the boundary
of O2

βH(P ) for β ∈ [0, π], apart from the four
β-staircases of P we also need the sequence of
the overlap-events which define when overlaps
of O2

βH(P ) finish. Initially, for β slightly greater
than zero, consecutive points of P in the y-coordinate
order define a very large overlap, whose area will
decrease until reaching zero when the corresponding
opposite wedges cease to intersect. In order to
know when this happens, we need to maintain the
current pairs of points which define the opposite
wedges determining the overlap, updating them as in
Figure 3, and focusing on the two points on rays with
the direction of the non-horizontal line in O2

β . See
Figure 5. The overlap finishes when β reaches the
angle γ between the horizontal and the line through
those two points.

The cost of this update is constant, once we know
which point is to be changed. Nevertheless, we also
need: (i) To maintain the list of the angles γ for all the
current overlaps and (ii) To compute the minimum of
this list, just to know which is the next overlap-event
of ending-overlap. The cost of these updates is at
most O(log n) time per insertion/deletion per point
in P , each time such an overlap-event occurs. Since
the number of these overlap-events is linear, the total
cost is O(n log n) time. �

Standard techniques (refer to Chapter 4 in [6])
allow to obtain the boundary of O2

βH(P ) in to-
tal O(n log n) time and O(n) space. Furthermore,
this time complexity of the algorithm is optimal,
since given O2

βH(P ) we can compute in linear time
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CH(O2
βH(P )) = CH(P ) and the computation of the

usual convex hull CH(P ) is in Ω(n log n).
From the discussion above we get:

Theorem 2 O2
βH(P ) can be computed and main-

tained for β ∈ [0, π] in Θ(n log n) time and O(n)
space. The numbers of edges and connected compo-
nents of O2

βH(P ) for β ∈ [0, π] can also be computed
and maintained in the same running time and space.

3 Optimizing the area and perimeter of O2
βH(P )

Given an angle β, let the polygon P(β) be the one
obtained joining counterclockwise consecutive vertices
of the four staircases that define O2

βH(P ).
Following the lines of Bae et al. [3], we express the

area of O2
βH(P ) in terms of the angle β, as

area(P(β))−
∑

i

area(4i(β)) +
∑

j

area( j(β)),

where: (i) The triangles 4i are defined by a segment
joining two consecutive vertices of a β-staircase S of P
and the edges joining them along S. (ii) The parallel-
ograms j are the overlaps between the boundaries
of opposite staircases. See Figure 4.

Figure 4: Dotted, the polygon P(β). In dark gray,
the area of O2Hβ(P ). In yellow, a triangle and a
parallelogram.

Next, we show how to compute each of the three
terms in the formula. This allows us to get a general
formula, which can be evaluated in each of the in-
tervals [βi, βi+1] between two consecutive events, ob-
taining the value of β ∈ [βi, βi+1] which maximizes
the area of O2

βH(P ) in that interval. Note that there
is a linear number of these intervals.

3.1 Polygon P(β)

Observe that, as β increases from 0 to π, the set of
vertices changes a linear number of times. This hap-
pens each time a point drops from one of the four
staircases of P . Let A = {β1, β2, . . . , βm} be the set
of angles at which the vertices of P drop out from the
four staircases of P , βi < βi+1, 1 ≤ i ≤ m− 1.

Since the set of vertices of P(β) remains unchanged
for any β ∈ (βi, βi+1), its area also remains un-
changed. Thus, the area of P(β) has to be updated
each time β reaches a value in A. Since A has only a
linear number of elements, the area of P(β) has to be
updated a linear number of times. Each update can
be done in constant time, as it involves the addition
or subtraction of the areas of at most two triangles.
See Figure 5. A flag will indicate when we have to
add or to subtract.

p3

p4

p2

p1

p3

p4

p2

p1

Figure 5: Left: Before the first event, the top-right
and the bottom-left β-staircases of P are formed by
all the points of P , the top-left β-staircase is the point
p4, and the bottom-right β-staircase is the point p1.
Right: After the first event, p2 leaves the top-right
β-staircase and p3 leaves the bottom-left β-staircase.

3.2 Triangles 4i
Since the number of vertices of P(β) changes only
when β reaches a βi ∈ A, the number of triangles
defined by P(β) also changes only when β equals some
βi ∈ A.

Using elementary geometry, it can be checked that
the sum of the areas of all the triangles of βi ∈ A
has the form c + d cot(β): It is sufficient to note
that the area of each triangle 4i of P(β) has the
form |ci ± di cot(β)|. For example, if pi = (xi, yi)
and pi+1 = (xi+1, yi+1) are consecutive vertices in
the counterclockwise order of the top-right β-staircase
of P , see Figure 6, then the area of the triangle 4i
bounded by (i) the segment joining pi to pi+1, (ii)
the horizontal line through pi, and (iii) the line with
angle β passing through pi+1 can be expressed as

area(4i) = |(xi−xi+1)(yi+1−yi)+(yi+1−yi)2 cot(β)| =

= |ci ± di cot(β)|.

3.3 Parallelograms j

Parallelograms arise from overlaps between opposite
β-staircases of the P . We need to compute the initial
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(xi+1, yi+1)

(xi, yi)(x0, y1)

β

(xj+1, yj+1)

(xj, yj)

(x′0, yj)

β

(xk+1, yk+1)

(xk, yk)

(x0, yj)

Figure 6: Left: Triangle corresponding to two con-
secutive points of the top-right β-staircase of P .
Right: Parallelogram corresponding to two consecu-
tive points of the top-right β-staircase and two con-
secutive points of the bottom-left β-staircase.

and final values of β for which each overlap is alive.
These overlap events should be merged with the other
events, in order to perform a discrete computation
updating and computing the maximum values of the
variables we want to optimize.

Overlaps can only arise between opposite staircases,
that is between the top-right and the bottom-left β-
staircases, or between the top-left and the bottom-
right β-staircases.

Moreover, as β increases from 0 to π, all the over-
laps between the top-left staircases and the bottom-
right β-staircases arise after all the overlaps between
the top-right and the bottom-left β-staircases. Thus
we can process them independently, one after another.

The sum of the areas of these parallelograms can be
expressed again as a function of the type c′+d′ cot(β).
For example, consider a parallelogram j deter-
mined by two consecutive points pj = (xj , yj) and
pj+1 = (xj+1, yj+1) of the top-right β-staircase, to-
gether with two consecutive points pk = (xk, yk) and
pk+1 = (xk+1, yk+1) of the bottom-left β-staircase.
See Figure 6.

Note that the vertices of the parallelogram j are
not pj , pj+1, pk, and pk+1. In fact, the parallelogram

j is the intersection of two triangles of P(β), defined
by pj , pj+1, and pk, pk+1.

Using elementary geometry, it can be checked that:
As β increases, the number of parallelograms gener-

ated by the top-right and the bottom-left β-staircases
decreases. We need to compute in advance the events
of the ends (and the beginnings) of overlaps, which
are exactly the beginning (and the end) events of ar-
eas for the top-right and the bottom-left β-staircases
the top-left and the bottom-right β-staircases.

Using again a priority queue, we can find the order
in which the overlaps disappear in overall O(n log n)
time. When a point defining an overlap changes, we
have to update the corresponding area formula. This
can be done in constant time.

The discussion above leads to the following result:

Theorem 3 To compute the angle β such that
O2
βH(P ) has maximum area can be done in O(n log n)

time and O(n) space.

As for maintaining the perimeter, it is enough to
maintain the four staircases and the overlaps.

Thus, we get the following result:

Theorem 4 To compute the angle β such that
O2
βH(P ) has minimum (non-zero) perimeter can be

done in O(n log n) time and O(n) space.

Acknowledgments. The authors would like to thank
the referees for their careful reading of this paper.
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A lower bound on opaque sets∗

Akitoshi Kawamura† Sonoko Moriyama‡ Yota Otachi§ János Pach¶

Abstract

It is proved that the total length of any set of count-
ably many rectifiable curves, whose union meets all
straight lines that intersect the unit square U , is at
least 2.00002. This is the first improvement on the
lower bound of 2 established by Jones in 1964. A
similar bound is proved for all convex sets U other
than a triangle.

1 Introduction

A barrier or an opaque set for U ⊆ R2 is a set B ⊆
R2 that intersects every line that intersects U . For
example, when U is a square, any of the four sets
depicted in Figure 1 is a barrier. Note that some part
of the barrier may lie outside U (Figure 2), and the
barrier need not be connected. This notion dates back
at least to Mazurkiewicz’s work in 1916 [12].

We are interested in “short” barriers B for a given
object U , and hence we restrict attention to rectifiable
barriers B. By this we mean that B is a union of
countably many curves b, pairwise disjoint except at
the endpoints, that each have finite length |b|, and the
sum of these lengths converges. We call this sum the
length of B and denote it by |B| (this does not depend
on how we divide B into curves).

Finding the shortest barrier is hard, even for simple
shapes U , such as the square, the equilateral triangle,
and the disk [6, 10]. The shortest known barrier for
the unit square is the last one in Figure 1, with length
2.638 . . . . This problem and its relatives have an ex-
tensive literature. See [6, 11] and the introduction of
[5] for more history, background, and related prob-
lems.

The best known lower bound for the unit square has
been 2, established by Jones in 1964 [8]. In general, for
convex U , a barrier needs to have length at least half
the perimeter of U (we review a proof in Section 2):

∗A full version is available [9]. The work presented here
was supported in part by JSPS KAKENHI, by the ELC
project (Grant-in-Aid for Scientific Research on Innovative Ar-
eas, MEXT, Japan), by OTKA under EUROGIGA projects
GraDR and ComPoSe 10-EuroGIGA-OP-003, and by Swiss Na-
tional Science Foundation Grants 200020-144531 and 200021-
137574.
†University of Tokyo
‡Nihon University
§Japan Advanced Institute of Science and Technology
¶EPFL, Lausanne and Rényi Institute, Budapest

2π
3

Figure 1: Barriers (in thick lines) for the unit square.
The first one (three sides) and the second one (diag-
onals) have lengths 3 and 2

√
2 = 2.828 . . . , respec-

tively. The third barrier consists of two sides and half
of a diagonal, and has length 2 + 1/

√
2 = 2.707 . . . .

The last one is the shortest known barrier, with length√
2 +
√
6/2 = 2.638 . . . , consisting of half a diagonal

and the Steiner tree of the lower left triangle.

Figure 2: A barrier (in thick lines) for a disk that is
shorter than the perimeter. This is not the shortest
one; see [6].

Lemma 1 |B| ≥ p for any rectifiable barrier B of a
convex set U ⊆ R2 with perimeter 2p.

Thus, from the point of view of finding short barri-
ers, the trivial strategy of enclosing the entire perime-
ter (or the perimeter of the convex hull if U is a
non-convex connected set) gives a 2-approximation.
See [4] and references therein for algorithms that find
shorter barriers. The current best approximation ra-
tio is 1.58 . . . [5].

Proving a better lower bound has been elusive
(again, even for specific shapes U). There has
been some partial progress under additional assump-
tions about the shape (single arc, connected, etc.)
and location (inside U , near U , etc.) of the barrier
[1, 3, 7, 11, 14], but establishing an unconditional
lower bound strictly greater than 2 for the unit square
has been open (see [4, Open Problem 5] or [3, Foot-
note 1]). We obtained such a lower bound:

Theorem 2 |B| ≥ 2.00002 for any rectifiable bar-
rier B of the unit square �.

Dumitrescu and Jiang [3] recently obtained a lower

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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U

α

U(
α)

Figure 3: The image U(α) ⊆ R of U .

bound of 2 + 10−12 under the assumption that the
barrier lies in the square obtained by magnifying �
by 2 about its centre. Their proof, conceived indepen-
dently of ours and at about the same time, is based on
different ideas, most notably the line-sweeping tech-
nique. It will be worth exploring whether their tech-
niques can be combined with ours.

Our proof can be generalized:

Theorem 3 For any closed convex set U with
perimeter 2p that is not a triangle, there is ε > 0 such
that any barrier B for U has length at least p+ ε.

See the full version [9] for a proof. Thus, the only
convex objects for which we fail to establish a lower
bound better than Lemma 1 are triangles.

Due to space constraint, we will only sketch our
proof of Theorem 2 in Section 3. In the final section,
we discuss a closely related question.

2 Preliminaries: A general lower bound

For a set U and an angle α ∈ [0, 2π) (all angle
calculation will be performed modulo 2π), we write
U(α) ⊆ R for the image of U projected onto the line
passing through the origin and enclosing angle +α
with the positive x-axis, i.e.,

U(α) =
{
x cosα+ y sinα : (x, y) ∈ U

}
(1)

(Figure 3). To say that B is a barrier of U means that
B(α) ⊇ U(α) for all α.

For the discussion of upper and lower bounds on the
length of a barrier, the following lemma says that it
suffices to consider barriers that are a countable union
of line segments. We call such a barrier straight.

Lemma 4 ([5, Lemma 1]) Let B be a rectifiable
barrier for U ⊆ R2. Then, for any ε > 0, there exists
a straight barrier Bε for U such that |Bε| ≤ (1+ε)|B|.

Since the proof in [5] has a gap, we include another
proof in our full version [9].

As mentioned in the introduction (Lemma 1), it
has been known that any barrier of a convex set must

be at least half the perimeter. We include a short
proof of this bound here, for completeness and further
reference. See [2] for another elegant proof.

Proof. [Proof of Lemma 1] By Lemma 4, we may
assume that B consists of line segments. We have

|U(α)| ≤ |B(α)|
≤
∑

b

|b(α)| =
∑

b

|b| · |cos(α− θb)| (2)

for each α ∈ [0, 2π), where the sum is taken over all
line segments b that comprise B without overlaps, and
θb is the angle of b. Integrating over [0, 2π), we obtain
∫ 2π

α=0

|U(α)|dα ≤
∑

b

(
|b| ·

∫ 2π

α=0

|cos(α− θb)|dα
)

= 4
∑

b

|b| = 4|B|. (3)

When U is a convex set, the left-hand side equals twice
the perimeter (cf. the Cauchy–Crofton formula [13,
Theorem 16.15]). �

3 Proof ideas for Theorem 2

Note that Theorems 2 and 3 do not merely state the
non-existence of a straight barrier B of length exactly
half the perimeter of U . Such a claim can be proved
easily as follows: If B is such a barrier, the inequality
(3) must hold with equality, and so must (2) for each
α. Thus, the second inequality in (2) must hold with
equality, which means that B never overlaps with it-
self when projected onto the line with angle α. Since
this must be the case for all α, the entire B must lie
on a line, which is clearly impossible.

The theorems claim more strongly that a barrier
must be longer by an absolute constant. The following
lemma says that in order to obtain such a bound,
we should find a part B′ ⊆ B of the barrier whose
contribution to covering U is less than the optimal by
at least a fixed positive constant.

Lemma 5 Let B be a barrier of a convex polygon U
of perimeter 2p. Then |B| ≥ p+ δ if there is a subset
B′ ⊆ B with

∫ 2π

α=0

|B′(α) ∩ U(α)|dα ≤ 4|B′| − 4δ. (4)

Proof. For each α ∈ [0, 2π), we have U(α) ⊆ B(α),
and thus

|U(α)| = |B(α) ∩ U(α)|
≤ |(B \B′)(α) ∩ U(α)|+ |B′(α) ∩ U(α)|
≤ |(B \B′)(α)|+ |B′(α) ∩ U(α)|. (5)

Integrating over α ∈ [0, 2π) and using the assump-
tion (4), we get 4p ≤ 4|B \ B′| + (4|B′| − 4δ) =
4|B| − 4δ. �
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U U

Figure 4: Two wasteful situations. Left: a barrier
segment (thick) lies far outside the object U , which
causes significant waste because this segment covers
in vain some lines (dotted) that do not meet U ; this is
discussed in Lemma 6. Right: two parts of the barrier
(thick) are facing each other, which is also wasteful
because they cover some lines (dotted) doubly; this is
roughly the situation discussed in Lemma 7.

There are several ways in which such a “waste” can
occur, and we make use of two of them (Figure 4).
The first one is when there is a significant part of
the barrier that lies far outside U , as described in the
following lemma (see the full version [9] for a proof,
which is relatively straightforward):

Lemma 6 Let b be a line segment that lies outside a
convex region U . Suppose that the set A := {α ∈
[0, 2π) : U(α) ∩ b(α) 6= ∅ } (of angles of all lines
through U and b) has measure ≤ 2π − 4ε. Then

∫ 2π

α=0

|b(α) ∩ U(α)|dα ≤ 4|b| cos ε. (6)

The second situation where we have a significant
waste required in Lemma 5 is when there are two sets
of barrier segments that roughly face each other:

Lemma 7 Let λ ∈ (0, π2 ), κ ∈ (0, λ) and l, D >
0. Let B− and B+ be unions of n line segments of
length l (Figure 5) such that

1. every segment of B− ∪B+ makes angle > λ with
the horizontal axis;

2. B− ∪ B+ lies entirely in the disk of diameter D
centred at the origin;

3. B− and B+ are separated by bands of angle κ
and width W := nl sin(λ− κ) centred at the ori-
gin, as depicted in Figure 5—that is, each point
(x, y) ∈ B± satisfies ±(x sinκ + y cosκ) ≥ W/2
and ±(x sinκ− y cosκ) ≥ W/2 (where ± should
be read consistently as + and −).

Then
∫ 2π

α=0

|(B− ∪B+)(α)|dα ≤ 8nl − 2W 2

D
. (7)

Note that 8nl = 4|B− ∪ B+|, so (7) is of the form
(4) in Lemma 5. Using Lemmas 6 and 7, our proof of
Theorem 2 roughly goes as follows. Consider a barrier
whose length is very close to 2.

> λ

B− B+

κκκ κ

W W

(0, 0)

D

Figure 5: Sets B− and B+ (Lemma 7).

1. There cannot be too much of the barrier far out-
side �, because that would be too wasteful by
Lemma 6.

2. This implies that there must be a significant part
of the barrier near each vertex of �, because this
is the only place to put barrier segments that
block lines that intersect � only near this vertex.

3. Among the parts of the barrier that lie near the
four vertices, there are parts that face each other
and thus lead to waste by Lemma 7. (It is this
last step that requires four corners and thus pre-
vents us from proving the generalized Theorem 3
for triangles: when we have only three corners, it
can happen that most barrier segments near the
first, second and third corners, respectively, point
towards the second, third and the first corners,
and thus no two of them face each other.)

See the full version [9] for a complete proof.
We remark that Lemma 7 requires a much more in-

volved argument than Lemma 6. Here we only com-
ment on what Lemma 7 claims intuitively and what
makes it nontrivial to prove. By symmetry, we can
halve the interval [0, 2π] and see that (7) is equivalent
to

4nl −
∫ π

α=0

|(B− ∪B+)(α)|dα ≥ W 2

D
. (8)

Let B− and B+ be the sets of line segments of length l
comprising B− and B+, respectively. For each b ∈
B− ∪ B+, consider the region

Rb := { (α, v) ∈ [0, π]× R : v ∈ b(α) }, (9)

whose area is 2l. Note that the first term 4nl of (8)
is the sum of this area for all b ∈ B− ∪ B+, whereas
the second term is the area of the union. Thus, (8)
says that the area of the overlap (considering mul-
tiplicity) is at least W 2/D. Since this term W 2/D
is proportional to n2, which is the number of pairs
(b, b′) ∈ B− × B+, we should lower-bound (by a con-
stant determined by λ, κ, D) the area of the overlap
Rb ∩ Rb′ per such pair (b, b′). This is relatively easy
if the overlaps Rb ∩Rb′ are all disjoint, but it can get
tricky otherwise. See the full version [9] for details.
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p+p−

q+q−

Figure 6: Consider the line segments p−p+ and q−q+, where p± = (±1, 8) and q± = (±15, 0), and let U be
the union of these segments with small “thickness”: U consists of a rectangle with vertices (±1, 8 ± ε) and
another with vertices (±15,±ε), for a small ε > 0. The boundaries of these thick line segments have total
length 64 (plus a small amount due to the thickness). The boundary of the convex hull of all of U has length
2 + 30 + 2

√
260 > 64.24 (plus thickness). But we have another half-line barrier depicted above, whose total

length is 2 + 60 + 2/
√
5 + 2/

√
5 < 63.79 (plus thickness, which can be made arbitrarily small).

4 Half-line barriers

We propose an analogous question, obtained by re-
placing lines by half-lines in the definition of barriers:
a set B ⊆ R2 is a half-line barrier of U ⊆ R2 if all
half-lines intersecting U intersect B. This intuitively
means “hiding the object U from outside,” which we
find perhaps as natural, if not more, than the notion
of opaque sets. Similarly to Lemma 1, we have

Lemma 8 |B| ≥ p for any rectifiable half-line bar-
rier B of a convex set U ⊆ R2 that is not a line seg-
ment and has perimeter p.

Thus, unlike for line barriers, the question is com-
pletely answered when U is connected: the shortest
half-line barrier is the boundary of the convex hull.

If U is disconnected, there can be shorter half-line
barriers. For example, if U consists of two connected
components that are far apart from each other, it is
more efficient to cover them separately than together.
One might hope that an optimal half-line barrier is
always obtained by grouping the connected compo-
nents of U in some way and taking convex hulls of
each. This is not true, as Figure 6 shows. We have
not been able to find an algorithm that achieves a
nontrivial approximation ratio for this problem.

Acknowledgments We are grateful to Gábor Tardos
for many interesting discussions on the subject.
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Approximating the Colorful Carathéodory Theorem

Wolfgang Mulzer∗ Yannik Stein∗

Abstract

Let P1, . . . , Pd+1 ⊂ Rd be d-dimensional point sets
such that the convex hull of each Pi contains the origin.
We call the sets Pi color classes, and we think of the
points in Pi as having color i. A colorful choice is a
set with at most one point from each color class. The
colorful Carathéodory theorem guarantees the existence
of a colorful choice whose convex hull contains the
origin. So far, the computational complexity of finding
such a colorful choice is unknown.

An m-colorful choice is a set that contains at most
m points from each color class. We present an ap-
proximation algorithm that computes for any constant
ε > 0, an dε(d + 1)e-colorful choice containing the
origin in its convex hull in polynomial time. This
notion of approximation has not been studied before,
and it is motivated through the applications of the
colorful Carathéodory theorem in the literature. Sec-
ond, we show that the exact problem can be solved in
dO(log d) time if Θ(d2 log d) color classes are available,
improving over the trivial dO(d) time algorithm.

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s theorem [4,
Theorem 1.2.3] states that if ~0 ∈ conv(P ), there is
a subset P ′ ⊆ P of size d + 1 with ~0 ∈ conv(P ′).
Bárány [1] gives a colorful generalization.

Theorem 1 (Colorful Carathéodory Theorem)
Let P1, . . . , Pd+1 ⊂ Rd be point sets (the color classes)
with ~0 ∈ conv(Pi), for i = 1, . . . , d + 1. There is a
colorful choice C with ~0 ∈ conv(C). Here, a colorful
choice is a set with at most one point from each color
class.

Theorem 1 yields Carathéodory’s theorem by setting
P1 = · · · = Pd+1. Moreover, there are many variants
with weaker assumptions [5]. While Carathéodory’s
theorem has a proof that gives a polynomial-time al-
gorithm, very little is known about the algorithmic
complexity of the colorful Carathéodory theorem [2].
This question is particularly interesting since Sarkaria’s

∗Institut für Informatik, Freie Universität Berlin, Germany.
{mulzer,yannikstein}@inf.fu-berlin.de. W. Mulzer is par-
tially supported by DFG Grants MU 3501/1 and MU 3501/2.
Y. Stein is supported by the Deutsche Forschungsgemeinschaft
within the research training group ‘Methods for Discrete Struc-
tures’ (GRK 1408).

proof [10] of Tverberg’s theorem [11] can be interpreted
as a polynomial-time reduction from computing Tver-
berg partitions to computing a colorful choice with the
origin in its convex hull. Both problems lie in Total
Function NP (TFNP), the complexity class of total
search problems that are solvable in non-deterministic
polynomial time. It is well known that no problem in
TFNP is NP-hard unless NP = coNP [3].

Related problems have been shown to be com-
plete for subclasses of TFNP. Recently, Meunier and
Sarrabezolles [6] proved that given d+1 pairs of points
P1, . . . , Pd+1 ∈ Qd and a colorful choice that contains
the origin in its convex hull, it is PPAD-complete [9]
to find another colorful choice with the origin in its
convex hull. The authors [8] showed the following
generalization of the colorful Carathéodory problem
to be PLS-complete [3]: given sets P1, . . . , Pn ⊂ Rd,
find a colorful choice s.t. the distance of its convex
hull to the origin cannot be decreased by swapping a
single point with another point of the same color.

Since we have no polynomial-time algorithms for
the colorful Carathéodory theorem, approximation al-
gorithms are of interest. This was first studied by
Bárány and Onn [2] who described how to find a color-
ful choice whose convex hull is “close” to the origin. Let
ε, ρ > 0 be parameters. Given sets P1, . . . , Pd+1 ∈ Qd
encoded in L bits s.t. (i) each Pi contains a ball of
radius ρ centered at the origin in its convex hull; and
(ii) all points p ∈ Pi fulfill 1 ≤ ‖p‖ ≤ 2, one can
find a colorful choice C s.t. d(~0, conv(C)) ≤ ε in time
poly(L, log(ε−1), ρ−1) on the Word-Ram with loga-
rithmic costs. If ρ−1 = LO(1), the algorithm actually
guarantees ~0 ∈ conv(C).

However, when using the colorful Carathéodory the-
orem in a proof, it is often crucial that the colorful
choice contains the origin in its convex hull. Being
“close” is not enough. On the other hand, allowing
multiple points from each color class may have a natu-
ral interpretation in the reduction. This is the case in
Sarkaria’s proof [10] of Tverberg’s theorem and in the
proof of the First Selection Lemma [4, Theorem 9.1.1].
This motivates a different notion of approximation.
Given a parameter m and sets P1, . . . , Pd+1 ∈ Qd, find
a set C s.t. ~0 ∈ conv(C) and s.t. |C∩Pi| ≤ m for all Pi.
In contrast to Bárány and Onn’s setting, we have no
general position assumption. Surprisingly, this notion
does not seem to have been studied before.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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Our Results. Given sets P1, . . . , Pn ⊂ Rd, we call a
set C containing at most m points from each set Pi
an m-colorful choice. A 1-colorful choice is also called
perfect colorful choice. All presented algorithms are
analyzed on the Real-Ram model with unit costs.
We begin with an algorithm based on a dimension
reduction argument that repeatedly combines approx-
imations for lower dimensional linear subspaces. This
leads to the following result:

Theorem 2 Let P1, . . . , Pd+1 ⊂ Rd be sets of size
at most d + 1 s.t. ~0 ∈ conv(Pi) for i = 1, . . . , d + 1.
Then, for any ε = Ω(d−1/3), an dε(d + 1)e-colorful
choice containing the origin in its convex hull can be
computed in dO((1/ε) log(1/ε)) time.

In particular, for any constant ε the algorithm from
Theorem 2 runs in polynomial-time. Given Θ(d2 log d)
color classes, we can also improve the naive dO(d)

algorithm for finding a perfect colorful choice.

Theorem 3 Let P1, . . . , Pn ⊂ Rd be n = Θ(d2 log d)
sets of size at most d + 1 s.t. ~0 ∈ conv(Pi), for
i = 1, . . . , n. Then, a perfect colorful choice can be
computed in dO(log d) time.

2 Fundamentals

Throughout the paper, we denote for a given point set
P = {p1, . . . , pn} ⊂ Rd by span(P ) = {∑n

i=1 αipi |
αi ∈ R} its linear span and by span(P )⊥ = {v ∈ Rd |
∀p ∈ span(P ) : 〈v, p〉 = 0} the subspace orthogonal to
span(P ); by aff(P ) = {∑n

i=1 αipi | αi ∈ R,
∑n
i=1 αi =

1} its affine hull; by pos(P ) = {∑n
i=1 µipi | µi ≥ 0}

all linear combinations with nonnegative coefficients;
by conv(P ) = {∑n

i=1 λipi | λi ≥ 0,
∑n
i=1 λi = 1} its

convex hull; and by dim(P ) the dimension of span(P ).
Furthermore, we say that a set P ⊂ Rd is in general

position if for every k ≤ d, no k+2 points lie in a k-flat
and if no proper subset of P contains the origin in its
convex hull. We also use the following constructive
version of Carathéodory’s theorem:

Lemma 4 Let P ⊂ Rd be a set of O(d) points s.t.
~0 ∈ conv(P ). In O(d4) time, we can find a subset
P ′ ⊆ P of at most d + 1 points in general position
such that P ′ contains the origin in its convex hull. �

3 Approximation by Rebalancing

Let P1, . . . , Pd+1 ⊂ Rd be the color classes and
dε(d + 1)e be the desired approximation guarantee.
Throughout the algorithm, we maintain a temporary
approximation C ⊂ P1 ∪ · · · ∪ Pd+1 that contains the
origin in its convex hull, but may have more than
dε(d + 1)e points of the same color. The algorithm
then repeatedly replaces at least one point from each

C

C1

C2

c′1 c′2

~0

Figure 1: Example of Lemma 6 in three dimensions.

color class that appears more than dε(d + 1)e times
in C by colors that appear only “few” times using a
dimension reduction argument.
The following lemma enables us to replace a single

point in C by an approximate colorful choice for the
orthogonal space span(C)⊥:

Lemma 5 Let C ⊂ Rd, |C| = k ≤ d+ 1, be a set in
general position that contains the origin in its convex
hull. Furthermore, let Q ⊂ Rd be a set of size O(d)
whose orthogonal projection onto span(C)⊥ contains
the origin in its convex hull. Then, there is a point c ∈
C computable in O(d4) time s.t. ~0 ∈ conv(Q∪C \{c}).

Proof. Write Q = {q1, . . . , ql}. Each qi can be ex-
pressed as q̃i + ĉi, where q̃i denotes the orthogonal
projection of qi onto span(C)⊥ and ĉi ∈ span(C).
By our assumption, the origin is a convex combi-
nation of q̃1, . . . , q̃l: ~0 =

∑l
i=1 λiq̃i, where λi ≥ 0

and
∑l
i=1 λi = 1. Consider the convex combination

q =
∑l
i=1 λiqi of points in Q with the same coefficients.

Since q =
∑l
i=1 λiqi =

∑l
i=1 λi(q̃i + ĉi) =

∑l
i=1 λiĉi,

q is contained in span(C). By our assumption, we
have ~0 ∈ conv(C) and C is in general position. It can
be easily verified that this implies pos(P ) = span(C).
Thus, there are k − 1 points cj1 , . . . , cjk−1

in C s.t.
−q ∈ pos(cj1 , . . . , cjk−1

). We take c ∈ C as the single
point that does not appear in cj1 , . . . , cjk−1

. It can
be found in O(d4) time by solving k ≤ d + 1 linear
systems of equations L1, . . . , Lk, where Lj is defined
as
∑
ci∈C,i 6=j αici = −q. Since C is in general posi-

tion, all (k − 1)-subsets of C are a basis for span(C).
Thus, the linear systems have unique solutions. Since
~0 ∈ conv(C), one of the linear systems has a solution
with no negative coefficients. �

Unfortunately, we do not know how to influence the
color of c in Lemma 5. We would like to replace a
point whose color contributes more than dε(d + 1)e
points to C. The next lemma gives us more control.

Lemma 6 Let C ⊂ Rd, |C| ≤ d + 1, be a set in
general position s.t. ~0 ∈ conv(C) and let C1, . . . , Cm be
a partition of C. Then, we can find in O(d3) time a set
C ′ = {c′1, . . . , c′m} ⊂ Rd with the following properties:
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(1) ∀i = 1, . . . ,m: c′i ∈ pos(Ci)\{~0}; (2) ~0 ∈ conv(C ′);
and (3) dim(C ′) = m − 1. We call the points in C ′

representatives for C w.r.t. the partition C1, . . . , Cm.

Proof. Since C contains the origin in its convex hull,
we can write~0 as~0 =

∑
c∈C λcc, where all λc > 0, since

C is in general position. Define c′j as c′j =
∑
c∈Cj

λcc
for i = 1, . . . ,m. Properties 1. and 2. can be easily
verified for the set C ′ = {c′1, . . . , c′m}. Furthermore, c′1
can be expressed as a linear combination of the other
points in C ′: c′1 = −(c′2 + · · ·+ c′m). Thus, dim(C ′) <
m. On the other hand, we have dim(C ′) ≥ m − 1
due to general position. This proves Property 3. See
Figure 1 for an example. �

Instead of applying Lemma 5 to C directly, we use
Lemma 6 to obtain a carefully chosen set of representa-
tive points and apply Lemma 5 to replace a representa-
tive. By choosing the partition for the representatives
appropriately, we can influence the color of the re-
moved points.

Now, we are ready to put everything together. The
algorithm repeatedly replaces points in C by a re-
cursively computed approximate colorful choice for
a linear subspace. We are given as input the color
classes P1, . . . , Pd+1 ⊂ Rd, each containing the origin
in its convex hull, and the current recursion depth
j. Define M(j) as M(j) = d(1 − ε)−j/2ε(d + 1)e
and D(j) as D(j) = d(1 − ε)jε(d + 1)e. In recursion
level j, the input is D(j)-dimensional and the algo-
rithm computes an M(j)-colorful choice. Hence, in
the topmost recursion level (i.e., j = 0), a dε(d+ 1)e-
colorful choice is computed. If d = O(1), we compute
an approximation by brute force. Otherwise, we ini-
tialize the temporary approximation C with a com-
plete color class and prune it with Lemma 4. If the
pruned set C is an M(j)-colorful choice, we return
it. Otherwise, we repeat the following balancing-steps:
we partition C into k = D(j) − D(j + 1) + 1 sets
C1, . . . , Ck, where the points from each color in C are
distributed evenly among the k sets. Let ni = |Pi ∩C|
denote the number of points from Pi in C. Since
k ≤ M(j) + 1, each set in the partition contains at
least one point from each color class Pi for which
ni ≥M(j) + 1. Applying Lemma 6, we compute rep-
resentatives C ′ = {c′1, . . . , c′k} for this partition. Note
that dim(C ′) = k − 1 and that dim(span(C ′)⊥) =
D(j) − k + 1 = D(j + 1). We call a color class Pi
light if ni ≤M(j)−M(j + 1), and heavy, otherwise.
We find d− k + 2 light color classes and project them
orthogonally onto span(C ′)⊥. Let P̃j1 , . . . , P̃jd−k+2

de-
note the projections. Next, we recursively compute
an M(j + 1)-colorful choice Q̃ for the space orthog-
onal to span(C ′) with (P̃j1 , . . . , P̃jD(j+1)+1

, j + 1) as
input. Let Q be the point set whose projection gives
Q̃. Using Lemma 5, we compute a point c′j ∈ C ′ s.t.
conv(Q ∪ C ′ \ c′j) contains the origin. We replace the
subset Cj of C by Q and prune C again with Lemma 4.

Since each representative c′i is contained in the cone
pos(Ci), Q ∪ C \ Cj still contains the origin in its
convex hull and the invariant is maintained. Thus, in
each iteration, at least one point from each color class
Pi for which ni > M(j) is replaced by points from
light color classes. This is repeated until no color class
appears more thanM(j) times in C.

Proof of Theorem 2. We prove correctness by in-
duction on the recursion depth. In particular, we show
that the input in the jth recursion is D(j)-dimensional
and that anM(j)-colorful choice is returned. There
are two base cases: if d = O(1) we compute a per-
fect colorful choice by brute force in O(1) time. This
is always a valid approximation regardless of M. If
D(j) + 1 ≤ M(j), we obtain a valid approximation
by pruning C with Lemma 4. Hence, the claim holds
in both base cases. In each level of the recursion, the
dimension is reduced by k − 1. The dimension of the
input in the recursion is thus D(j)− k − 1 = D(j + 1)
as claimed. Since D is decreasing, some base case
is reached eventually. Assume now that the current
recursion depth is j and that the claim holds for all
j′ > j. Let C(t) denote the set C after t iterations
of the balancing-steps in the jth recursion and n

(t)
i

the number of points from Pi in C. Define the ex-
cess of a color Pi as e

(t)
i = max{0, n(t)i −M(j)} and

the excess of C(t) as E(C(t)) = maxd+1
i=1 e

(t)
i . We show

the following invariant: (α) ~0 ∈ conv(C(t)); and (β)
E(C(t)) < E(C(t−1)) for t ≥ 1. The invariant implies
that eventually anM(j)-colorful choice is returned.
Before the first iteration, the invariant holds since

C(0) = P1. Assume we are now in iteration t and
the invariant holds for all previous iterations. Due to
Lemmas 5 and 6, we have ~0 ∈ conv(C(t)) and thus
Property (α) holds. Because C(t−1) was not anM(j)-
colorful choice (otherwise the balancing-steps would
not haven executed), E(C(t−1)) ≥ 1. Since Q contains
only light color classes, adding Q to C(t−1) does not
increase the excess. At least one point in C from each
color Pi with e

(t−1)
i ≥ 1 is replaced by Q. Hence,

E(C(t)) < E(C(t−1)). Finally, we show that there are
always D(j+1)+1 light color classes for the recursion.
By induction, the recursively computed set Q is an
M(j + 1)-colorful choice. As C is pruned to at most
D(j)+1 points at the end of the balancing-steps, there
are at most

⌊
D(j)+1

M(j)−M(j+1)

⌋
heavy color classes. One

can show that this is at most D(j) − (D(j + 1) + 1)
for d = Ω(1/ε3). Since we assumed ε = Ω(d−1/3), we
can always find D(j + 1) + 1 light colors.

We now analyze the running time. Each iteration of
the balancing-steps reduces the excess by at least one
until the desired approximation guarantee is reached.
Thus, the total number of iterations is bounded by
D(j) + 1 − M(j) = O(d). Each iteration requires
O(d4) time. The recursion stops when d = O(1) or
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M(j) ≥ D(j) + 1. In the first case, a perfect colorful
choice is computed in O(1) time. In the second case,
we spend O(d4) time since pruning P1 with Lemma 4
already gives a valid approximation. We can bound
the recursion depth j until the second base case is
reached. SinceM(j) ≥ ε(1− ε)j/2(d+ 1) and 3(1−
ε)j(d+ 1) ≥ D(j) + 1, we haveM(j) ≥ D(j) + 1 for
j = O((1/ε) log(1/ε)) using that − log(1− ε) = Ω(ε).
Thus, the total running time is dO((1/ε) log(1/ε)). �

4 A Subexponential Exact Algorithm

Now, we consider the case that we have “many” color
classes instead of “only” d+ 1: given Θ(d2 log d) color
classes, our algorithm computes a perfect colorful
choice in dO(log d) time, improving the brute force
dO(d) algorithm. The algorithm follows the structure
of Miller and Sheehy’s algorithm for computing approx-
imate Tverberg partitions [7]. We repeatedly combine
m-colorful choices (for some m) to one dm/2e-colorful
choice. Eventually, we obtain a perfect colorful choice.

Lemma 7 Let C1, . . . , Cd+1 ⊂ Rd be m-colorful
choices s.t. |Ci| ≤ d+ 1 and s.t. ~0 ∈ conv(Ci). Then,
a dm/2e-colorful choice containing the origin in its
convex hull can be computed in O(d5) time.

Proof. First, we prune each set Ci with Lemma 4.
This requires O(d5) time. Next, for i = 1, . . . , d +
1, we partition the colorful choice Ci into two sets
Ci,1, Ci,2 of equal size s.t. the points from each color
class are distributed evenly among the two sets. For
each partition Ci,1, Ci,2, we apply Lemma 6 to obtain
two representatives ci,1 and ci,2 in O(d3) time. By
Lemma 6, we have ci,1 ∈ pos(Ci,1) and ci,2 ∈ pos(Ci,2).
Since ~0 ∈ conv({ci,1, ci,2}), both points lie on a line
through the origin and thus −ci,1 ∈ pos(Ci,2). The d+
1 points c1,1, c2,1, . . . , cd+1,1 are linearly dependent, so
there exists a nontrivial linear combination~0 = α1c1,1+
· · ·+ αd+1cd+1,1. For i = 1, . . . d+ 1, we let the set C
contain Ci,1 if αi > 0 (since ci,1 ∈ pos(Ci,1)) and Ci,2
if αi < 0 (since −ci,1 ∈ pos(Ci,2)). By construction, C
contains the origin in its convex hull and exactly one
of Ci,1, Ci,2, for i = 1, . . . , d+ 1. Since all sets Ci are
m-colorful choices, C is a dm/2e-colorful choice. �

Proof of Theorem 3. Let A be an array of size k =
Θ(log d). We set c0 = d + 1 and ci = dci−1/2e, for
i = 1, . . . , k−1. The ith cell of A stores a collection of
ci-colorful choices, such that each color class appears in
exactly one colorful choice in A. Initially, A[0] contains
all Θ(d2 log d) color classes. We repeat the following
steps, until we have computed a perfect colorful choice:
let i be the maximum index s.t. A[i] contains some d+1
sets C1, . . . , Cd+1. We apply Lemma 7 to obtain one
ci+1-colorful choice C. Let C ′ be the set C pruned with
Lemma 4. If C ′ is a perfect colorful choice, we return it.

Otherwise, we add it to A[i+ 1]. Furthermore, we add
all colors that were removed during the pruning to A[0].
As these colors do not appear anywhere else in A, the
invariant is maintained. We claim that a combination
of d+ 1 sets in A[k] for k = dlog(d+ 1)e+ 1 results in
a perfect colorful choice. We have cj ≤ d+1

2k
+ 2. Thus,

sets in A[dlog(d + 1)e] are 3-colorful choices, sets in
A[dlog(d+ 1)e+ 1] = A[k] are 2-colorful choices and
the combination of d+ 1 sets in A[k] gives a perfect
colorful choice. It remains to show that we can always
make progress. The array has k = Θ(log d) levels
and a colorful choice has at most d colors. Thus, for
d2k + 1 = Θ(d2 log d) colors, the pigeonhole principle
implies that there is a cell with d+ 1 sets.

Let us consider the running time. One combination
step takes O(d5) time. To compute a set in level i,
we have to compute d + 1 sets in level i − 1. Hence,
computing one set in level k+1 takes dO(log d) time. �
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Packing Segments in a Simple Polygon is APX-hard

Heuna Kim ∗ Tillmann Miltzow †

Abstract For a given set of line segments and a poly-
gon P in the plane, we want to find the maximum
number of segments that can be disjointly embedded
by translation into P . We show APX-hardness and
discuss variations.

This problem can be considered in two respects : as
a variant of the Kakeya problem and as a maximum-
packing problem for line segments.

1 Introduction

The Kakeya Problem. The famous Kakeya prob-
lem asks for the region R in the plane with minimum-
area such that a unit-length line segment can continu-
ously rotate by π within R. One variant of the Kakeya
problem relaxes the continuous rotation and tries to
find a planar region R′ with the minimum area such
that translates of all the unit-length line segments in
the plane can be placed in R′. The segments may
intersect. This region R′ is called a minimum area
translation cover.

Pál [5, 4] solved these two problems, and many
other interesting variations about the minimum-area
translation cover have been studied (refer [3, 6] for
surveys).
A Minimum-Container Problem and a 3-
approximation Algorithm. Finding a minimum-
area translation cover can be considered as a
minimum-container problem if we want to disjointly
embed line segments. The following question arises
naturally in this context; given a set of line segments
S, what is the minimum-area convex body R such
that translates of segments in S can be disjointly em-
bedded in R?

We suspect this problem is computationally in-
tractable, but not much is known about this problem
except for a 3-approximation algorithm by Sang Won
Bae (by private communication).

The 3-approximation algorithm is as follows. Us-
ing the algorithm by Ahn et al. [1], we compute the
triangle T which is the minimum-area convex transla-
tion cover of the given set of line segments S. Then,
we construct a convex trapezoid Q as follows. First
translate two copies T1, T2 of T so that one side of

∗Institut für Informatik, Freie Universität Berlin,
heunak@mi.fu-berlin.de. This research was supported
by the Deutsche Forschungsgemeinschaft within the research
training group Methods for Discrete Structures (GRK 1408).
†Institut für Informatik, Freie Universität Berlin,
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vT
T1

T3 T2

Figure 1: The minimum-area convex translation cover
T and the trapezoid Q = T1 ∪ T2 ∪ T3.

each copy is aligned on a line and T1 and T2 share
one vertex v. We obtain the third copy T3 by rotat-
ing T by π and translate it so that the three copies
form the trapezoid Q = T1 ∪ T2 ∪ T3, see Figure 1.

Then all segments in S can be disjointly embedded
in Q; every segment s in S can be translated in a way
that one of its endpoints lies on v and s still lies inside
Q. Since the optimal area is at least the area of T ,
the obtained trapezoid gives a 3-approximation.

Problem Definition and Summary of Results.
To solve a minimum-container problem it is natural to
consider its dual, that is, a maximum-packing prob-
lem. We consider the maximum-packing problem in
this abstract. We show hardness results for simple
polygons and a simple approximation algorithm for
convex polygons.

As in [2], we define MaxSegPackd for a class R
of regions in Rd as the following problem; given a
collection of (open) segments and a region R ∈ R,
what is the maximum number of segments that can
be disjointly embedded in R by translation?

This problem is known to be NP-hard when R is a
convex 3-polytope of general regions in the plane [2].
We state the result for a convex 3-polytope.

Theorem 1 ([2]) MaxSegPack3 for a convex 3-
polytope is NP-hard.

We state the main results as the following theorem.

Theorem 2 MaxSegPack2 for a simple polygon
and a set of unit segments U is strongly NP-
complete. Also, approximating an optimal solution
of MaxSegPack2 for a simple polygon and a set of
unit segments with an approximation ratio 15/16 + ε
is NP-hard for any ε > 0.

We could also find a simple approximation algo-
rithm.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Theorem 3 There exists a k-approximation algo-
rithm for MaxSegPack2 for a convex k-gon.

By inspecting the proof from Theorem 1 in [2],
we could easily conclude NP-hardness for high-
dimensional cases.

We extend MaxSegPackd to the following prob-
lem MaxPack(dK , dS) ; given a collection of (open)
dS-simplices and region R in dK-space, what is the
maximum number of simplices that can be disjointly
embedded in R by translation?

Theorem 4 MaxPack(dK , dS) for a convex dK-
polytope is NP-hard for all dK ≥ 3, dS ≥ 1.

Remark. When a line segment s can be embedded in
some region R, we say s fits in R. Also, if a set of line
segments S can be disjointly embedded in R, we say
S can be packed in R.

We regard two line segments of the same lengths
and the same slopes as the same line segment since
if two line segments have the same lengths and the
same slopes we can overlap them completely by trans-
lation.

2 Proof of Theorem 2

We first show that MaxSegPack2 for a simple poly-
gon P is in NP and then show that it is NP-hard. A
natural candidate for a certificate of this problem is
the set of the coordinates of the endpoints of the line
segments. We can check whether the line segments
are inside a given simple polygon P and whether they
have no intersections by using linear inequalities.

We claim that those coordinates and the coefficients
of linear inequalities can be described with polynomial
precision. To this end, it is enough to show that the
coordinates correspond to a feasible solution of con-
junctions and disjunctions of a polynomial number of
linear inequalities with coefficients of bounded preci-
sion.

To specify the linear inequalities, we first triangu-
late the given simple polygon arbitrarily. Three in-
equalities suffice to describe if each endpoint lies in
one of the triangles. This gives us 6n inequalities,
where n specifies the number of line segments we want
to pack. A pair of line segments is crossing free if and
only if at least one of them is completely to the left or
completely to the right of the supporting line of the
other. Since two linear inequalities suffice to describe
if a line segment is to the left of another, this gives
us 2

(
n
2

)
linear inequalities. Lastly, we need to specify

two equalities per line segment to define the slope and
the length of line segments (relative positions of two
endpoints). In total, this gives us 6n + 2

(
n
2

)
inequal-

ities and 2n equalities with coefficients of bounded
precision. Hence, we can verify any certificate in a
polynomial time.

Before describing the reduction from MAX-3-SAT,
we state the following two lemmas for constructing
gadgets. Lemma 5 will be used for the clause gadgets
and Lemma 6 for the variable gadgets.

Figure 2: Four segments and a polygon such that ex-
actly one of the segments fits but no two of them can
be packed.

Lemma 5 Let S be a set of unit-length line segments
with distinct slopes. We construct a convex polygon
Q = Q(S) with the following properties:

1. any segment s ∈ S fits in Q;
2. no two segments in S can be packed in Q; and
3. no unit-length line segment s 6∈ S fits in Q.

Proof. Translate all the segments of S so that their
midpoints lie at the origin. Now define Q(S) as the
convex hull of all those segments; see Figure 2 for an
illustration.

The diameter of Q is 1 and the diameter is attained
only for pairs of opposite extreme points of Q. There-
fore, a unit-length line segment s fits in Q if and only
if s can be translated in a way that its endpoints lie at
opposite extreme points of Q. This implies the first
and the third property.

Each segment s that fits in Q has a unique position
in Q and this unique position always goes through the
origin. Thus, no two segments of unit length can be
packed in Q. This implies the second property. �

S

S′

Figure 3: Sets S and S′ and the convex polygon
R(S, S′) constructed from them.

Lemma 6 Let S be a set of unit length line segments
such that the angle with the x-axis is within ±0.1
radian, and let S′ be a set of unit-length line segments
such that the angle with the y-axis is within ±0.1
radiant.

There exists a convex polygon R = R(S, S′) with
the following properties:
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1. segments in S can be packed in R;
2. the set S′ can be packed in R;
3. no two segments s ∈ S and s′ ∈ S′ can be packed

in R; and
4. no unit segment s 6∈ S ∪ S′ fits into R.

Proof. Translate the left endpoint of every line seg-
ment s ∈ S to the point (−0.5, 0) and the bottom
endpoint of every line segment s′ ∈ S′ to the point
(0,−0.5). The convex hull of those segments define
R = R(S, S′). See Figure 3.

The diameter of Q is 1 and the diameter is attained
only for pairs of points (p, q) such that either 1) p =
(−0.5, 0) and q is one of right extreme points (marked
blue in Figure 3). or 2) p = (0,−0.5) and q is one of
top extreme points (marked green in Figure 3). These
are exactly the endpoints of segments in S ∪ S′ after
we moved the segments of S. By the same argument
as in Lemma 5, any unit-length line segment s fits in
R if and only if s ∈ S∪S′. Each segment s that fits in
R has a unique position p(s) in R. Observe that p(s1)
and p(s2) are disjoint if either s1, s2 ∈ S or s1, s2 ∈ S′
and p(s1) and p(s2) intersect otherwise. Thus, any
two segments s1 and s2 can be packed in R if and
only if either s1, s2 ∈ S or s1, s2 ∈ S′. Altogether
these arguments imply the above four properties. �

Given a 3-CNF formula φ with m clauses and n
variables, we construct a simple polygon P and a
set of 2m unit segments U that satisfy the following
property; there exists an assignments that satisfies t
clauses of φ if and only if t+m elements of U can be
disjointly embedded in P .

We begin by defining the line segments. Then we
describe clause and variable polygons and finally we
describe how to join everything to one big polygon.

For each clause Ci, i = 1, . . . ,m of φ we construct
two unit segments si and s′i. The line segment si
forms an angle αi = i

100m with the x-axis and s′i
forms an angle α′i = i

100m with the y-axis. 1 Note
that all si’s can be regarded as slight perturbations
of a horizontal unit segment, and all s′i as a slight
perturbation of a vertical unit segment.

For each clause Ci we define the clause polygon

Qi = Q({si, s′i})

according to Lemma 5.

For each variable xj with j = 1, . . . , n, we define

Sj = { si | the literal xj is contained in Ci } and

S′j = { s′i | the literal xj is contained in Ci }.
1To compute the endpoints of the segments we need sine and

cosine operations, but it is not necessary since the construction
does not depend on the exact values of the angles. We also
could define the angles as rational values.

Figure 4: Joining polygons together without new seg-
ments fitting in.

For each variable xj we define the variable polygon

Rj = R(Sj , S
′
j)

according to Lemma 6. Note that each segment s ∈ U
fits in at most four polygons: one clause polygon and
at most three variable polygons.

The polygon P is defined by joining all the polygons
Q1, . . . , Qm, R1, . . . , Rn. In order to join these poly-
gons, add a narrow diagonal tunnel from one polygon
to the next; see Figure 4 for an illustration. Since
every segment in U is either almost horizontal or ver-
tical, none of them fits into the tunnel.

It is clear that this construction can be done within
a polynomial time. For this polygon P and this set of
line segments U , we claim that there exists an assign-
ment that satisfies t clauses of φ if and only if t + m
elements of U can be packed in P .

First suppose that we are given an assignment A
that satisfies t clauses of φ. We will describe how
to embed t + m segments in the polygon P . There
are some segments that fit in P not uniquely but in
several possible variable polygons. In this case, we
make an arbitrary choice. If xj is true in A, place
segments in Sj in the variable polygon Rj and if xj
is false in A, place segments in S′j in Rj unless the
segments are already placed in some other variable
polygon. We also place all remaining segments into
their corresponding clause polygon Qi if possible.

If Ci is satisfied by A, both segments si and s′i are
placed in P for the following reason. Either si or s′i is
placed in Rj for some j since at least one variable xj
in Ci makes Ci satisfied. We placed the other to Qi
unless it is already contained in a different variable
polygon.

Otherwise, only one of the segments si or s′i fits in
P , since neither si nor s′i are contained in any variable
polygon Rj and both segments cannot fit in Qi. Since
t clauses are satisfied, the first case happens t times
and the second case appears m−t times. Hence, t+m
segments can be packed into P .

For the other direction, suppose t + m segments
in U can be packed in P . We assume this packing
is maximal. We define an assignment A by checking
which segments are placed in Rj . If Rj contains a
segment of Sj then we set xj to true and otherwise
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we set xj to false. We can repeat the same argument
in the other direction. For each clause Ci, if si and
s′i are both packed, then either si or s′i is in some Rj ,
which implies that the clause Ci is satisfied by the
variable xj . Otherwise, one of si and s′i is packed, but
none of si and s′i is placed in a variable polygon, and
this implies that Ci cannot be satisfied by A. Then
2× nS + nN = t+m and nS + nN = m where nS is
the number of satisfied clauses and nN is the number
of non-satisfied clauses. Then the number of satisfied
clause in A is t. This shows the problem is NP-hard.

Finally we show that no approximation algorithm
exists with an approximation ratio 15/16 + ε for any
ε > 0. Suppose there exists an approximation algo-
rithm for MaxSegPack2 for a simple polygon and a
set of unit length segments with an approximation ra-
tio 15/16 + ε/2 for some ε > 0. By using the previous
construction for any CNF formula φ of m clauses, we
can find an assignment A that satisfies t clauses where
t+m
2m ≥ 15/16+ε/2; that is, we have an approximation

algorithm for MAX-3-SAT with an approximation
ratio t/m ≥ 7/8 + ε.

Since there is no approximation algorithm for
MAX-3-SAT with the approximation ratio 7/8 + ε
for any ε > 0 unless P=NP, there exists no approx-
imation algorithm for MaxSegPack2 for a simple
polygon and a set of unit segments with an approxi-
mation ratio 15/16+ε/2 for any ε/2 > 0 unless P=NP.

3 Approximation Algorithm for a Convex k-gon

The following algorithm gives a k-approximation for
MaxSegPack2 for a convex polygon.

Input: a set of line segments S; convex k-gon P
Output: T ⊆ S; a k-approximated solution
for all v ∈ vertices of P do

Sv := {s ∈ S : s can be placed on v inside P}
end for
return the largest set Sv

Any segment s ∈ S that fits in P can be translated
so that one of endpoints of v is on a vertex of P and v
still lies in P . For each vertex v of P , all the elements
Sv can be packed in P . Since

⋃

p:vertices of P

Sv

is at least the optimal solution, the largest set Sv has
the cardinality at least 1/k of the optimal solution.

4 Hardness for d-space

Theorem 1 in [2] states MaxSegPack3 for a convex
3-polytope is NP-hard; that is, MaxPack(3, 1) is NP-
hard. In the proof, all line segments were constructed
in a way that they are uniquely embeddable in a
convex 3-polytope for the reduction. We can prove

Figure 5: Visualization of constructing a pyramid, in
dimension three.

that MaxPack(dK , dS) for a convex dK-polytope is
NP-hard inductively by reducing (1) an instance of
MaxPack(dK , 1) to an instance of MaxPack(dK +
1, 1) and (2) an instance of MaxPack(dK , dS) to an
instance MaxPack(dK + 1, dS + 1).

Let (K,S) be any instance of MaxPack(dK , 1)
where K is a convex dK-polytope and S a set of
line segments that can be uniquely embedded in
K. We construct K ′ by taking a pyramid whose
base is K. Then K ′ is convex (dK + 1)-polytope.
Then, (K ′,S) is an instance of MaxPack(dK + 1, 1)
whose solution corresponds to a solution of (K,S) for
MaxPack(dK , 1), since all line segments s ∈ S can
be embedded in K uniquely and s cannot be embed-
ded in any smaller homothetic copies of K. This is
the reduction for (1), and the reduction for (2) is quite
similar; we replace s ∈ S by the convex hull s′ of s
and the apex of K ′. Therefore, MaxPack(dK , dS) is
NP-hard for all dK ≥ 3, dS ≥ 1.
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Finding Pairwise Intersections Inside a Query Rectangle

Mark de Berg∗ Ali D. Mehrabi∗

Abstract

We study the following problem: preprocess a set
O of objects in the plane into a data structure
that allows us to efficiently report all pairs of ob-
jects from O that intersect inside an axis-aligned
rectangular query range Q. We present data struc-
tures of size O(npolylog n) and with query time
O((k + 1) polylog n) time, where k is the number of
reported pairs, for two classes of objects: axis-aligned
rectangles and objects with small union complexity.

1 Introduction

The study of geometric data structures is an important
subarea within computational geometry, and range
queries form one of the most widely studied topics
within this area. In a range query, the goal is to report
or count all points from a given set O that lie inside
a query range Q. The more general version, where
O contains other objects than just points and the
goal is to report all objects intersecting Q, is often
called intersection searching and it has been studied
extensively as well.

A common characteristic of the range-searching and
intersection-searching problems studied so far, is that
whether an object oi ∈ O should be reported (or
counted) depends only on oi and Q. In this paper we
study a range-searching variant where we are interested
in reporting pairs of objects that satisfy a certain
criterion. In particular, we want to preprocess a set
O = {o1, . . . , on} of n objects in the plane such that,
given a query range Q, we can efficiently report all
pairs of objects oi, oj that intersect inside Q. An
obvious approach is to precompute all intersections
between the objects and store the intersections in a
suitable intersection-searching data structure. This
may give fast query times, but in the worst case any
two objects intersect, so Ω(n2) is a lower bound on the
storage for this approach. The main question is thus:
can we achieve fast query times with a data structure
that uses subquadratic (and preferably near-linear)
storage in the worst case?

We answer this question affirmatively for the case
where Q is an axis-aligned rectangle and for two classes
of objects: axis-aligned rectangles and objects with

∗Department of Computer Science, TU Eindhoven, the
Netherlands. MdB and AM are supported by the Netherlands
Organization for Scientific Research (NWO).

small union complexity. For axis-aligned rectangles we
obtain a data structure with O(n log n) storage and
O((k+ 1) log n log∗ n) query time, where k is the num-
ber of reported pairs of objects. Our data structure for
objects with small union complexity—disks and other
classes of fat objects are examples—uses O(U(n) log n)
storage, where U(n) is maximum complexity of the
union of n objects from the given class, and it has
O((k + 1) log2 n) query time.

We assume throughout the paper that the objects
in O as well as the query rectangles are closed sets.

2 Axis-aligned segments and rectangles

In this section we study the case where the set O is a
set of n rectangles in the plane. As a warm-up exercise
we start with the case where O consists of axis-aligned
segments. Our approach for these two cases is the
same and uses the following two-step query process.

1. Compute a seed set O∗(Q) ⊆ O of objects such
that the following holds: for any two objects oi, oj
in O such that oi and oj intersect inside Q, at
least one of oi, oj is in O∗(Q).

2. For each seed object oi ∈ O∗(Q), perform an
intersection query with the range oi ∩ Q in the
set O, to find all objects oj 6= oi intersecting oi
inside Q.

To make this approach efficient, we require that the
seed set O∗(Q) does not contain too many objects
that do not give an answer in Step 2. More precisely,
if k denotes the number of pairs of objects in O that
intersect inside Q, then we require that |O∗(Q)| =
O(k + 1).

Axis-aligned segments. Let O = {s1, . . . , sn} be a
set of axis-aligned segments, and let V(O) and H(O)
denote the set of vertical and horizontal segments in
O, respectively. We assume for simplicity that we are
only interested in intersections between horizontal and
vertical segments; the solution can easily be adapted
to the case where we also want to report intersections
between two horizontal (or two vertical) segments.

The key to our approach is to be able to efficiently
find the seed set O∗(Q). To this end, during the
preprocessing we compute an O(n)-sized subset W
of the intersection points in O. We call intersection
points in W witnesses. The witness set W is defined
as follows: for each line segment si ∈ V(O) we put the
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preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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topmost and bottommost intersection points of si with
a segment from H(O) (if any) into W ; for each line
segment si ∈ H(O) we put the leftmost and rightmost
intersection points of si with a segment from V(O)
(if any) into W . Since we take at most two witness
points for each line segment, the size of W is clearly
at most 2n. Our data structure to find the seed set
O∗(Q) now consists of three components.

• We store the witness set W in a data structure
D1 for 2-dimensional orthogonal range reporting.
• We store V(O) in a data structure D2 that allows

us to decide if there are any segments that com-
pletely cross the query rectangle Q from top to
bottom. The data structure should also be able
to report all such segments.
• We store H(O) in a data structure D3 that allows

us to decide if there are any segments that com-
pletely cross the query rectangle Q from left to
right.

Step 1 of our query process, where we find the seed
set O∗(Q), now proceeds as follows.

1(i) Perform a query in D1 to find all witness points
inside Q. For each reported witness point, insert
the corresponding segment into O∗(Q).

1(ii) Perform queries in D2 and D3 to decide if the
number of segments crossesQ completely from top
to bottom, and the number of segments crosses Q
completely from left to right, are both non-zero.
If so, report all segments crossing completely from
top to bottom, and put them into O∗(Q).

Lemma 1 Let si, sj be two segments in O such that
si ∩ sj ∈ Q. Then at least one of si, sj is put into
O∗(Q).

Proof. If si crosses Q completely from left to right
and sj crosses Q completely from top to bottom (or
vice versa), then one of them will be put into O∗(Q)
in Step 1(ii). Otherwise at least one of the segments,
say si, has an endpoint v inside Q. But then the
intersection point on si closest to v, which is a witness
point, must lie inside Q. Hence, si is put into O∗(Q)
in Step 1(i). �

Recall that in Step 2 of the query procedure we need
to report, for each segment si in the seed set O∗(Q),
the segments sj ∈ O intersecting si∩Q. Thus we need
to store O in a data structure D4 that allows us to
report all segments intersecting an axis-aligned query
segment. Putting everything together we obtain the
following theorem.

Theorem 2 Let O be a set of n axis-aligned segments
in the plane. Then there is a data structure that
uses O(n log n) storage and that allows us to report,
for any axis-aligned query rectangle Q, all pairs of

segments si, sj in O such that si intersects sj inside
Q in O((k + 1) log n log∗ n) time, where k denotes the
number of answers.

Proof. For the data structure D1 on the set W we can
take a standard 2-dimensional range tree [2], which
uses O(n log n) storage. If we apply fractional cascad-
ing [2], reporting the witness points inside Q takes
O(log n + kw) time, where kw is the number of re-
ported witness points. For D2 (and, similarly, D3)
we note that a vertical segment si := xi × [yi, y

′
i]

crosses Q := [xQ, x
′
Q] × [yQ, y

′
Q] if and only if the

point (xi, yi, y
′
i) lies in the range [xQ, x

′
Q]× [−∞, yQ]×

[y′Q,∞]. Hence, we can use the data structure of Sub-
ramanian and Ramaswamy [9], which uses O(n log n)
storage and has O(log n log∗ n+#answers) query time.
Hence, the supporting data structures for Step 1 use
O(n log n) storage, and finding the seed set takes
O(log n log∗ n+ |O∗(Q)|) time.

It remains to analyze Step 2 of the query procedure.
First notice that the problem of finding for a given si ∈
O∗(Q) all sj ∈ O such that si ∩Q intersects sj , is the
same range-searching problem as Step 1(ii), except that
the query range is a line segment this time. Hence, we
again transform the problem to a 3D range-searching
problem and use the data structure of Subramanian
and Ramaswamy [9]. Thus the running time of Step 2
is
∑
si∈O∗(Q)O(log log∗ n+ ki), where ki denotes the

number of segments in O that intersect si inside Q.
Since |O∗(Q)| 6 2k where k is the total number of
reported pairs—each segment in O∗(Q) intersects at
least one other segment inside Q and for every reported
pair we put at most two segments into the seed set—
the time for Step 2 is O(|O∗(Q)| log n log∗ n + k) =
O((k + 1) log n log∗ n). �

Axis-aligned rectangles. Let O = {r1, . . . , rn} be
a set of axis-aligned rectangles in the plane. As before,
we first define a witness set W . The witnesses in
W are now axis-aligned segments rather than just
points. For each rectangle ri ∈ O we define at most
ten witness segments, two for each edge of ri and
two in the interior of ri, as follows; see Fig. 1. Let
e be an edge of ri, and consider the set S(e) := e ∩(⋃

j 6=i rj
)

, that is, the part of e covered by the other

rectangles. The set S(e) consists of a number of sub-
edges of e. If e is vertical then we add the topmost
and bottommost sub-edge from S(e) (if any) to W ; if
e is horizontal we add the leftmost and rightmost sub-
edge to W . The two witness segments in the interior
of ri are defined as follows. Suppose that there are
vertical edges (belonging to other rectangles rj) that
completely cross ri from top to bottom. Then we put
e′ ∩ ri into W , where e′ is the rightmost such crossing
edge. Similarly, we put into W the topmost horizontal
edge e′′ that completely crosses ri from left to right.
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ri

Figure 1: The witness segments for a rectangle (ri).
The gray areas indicate all intersections with ri. The
black segments form the set of all witness segments of
ri.

Our data structure to find the seed set O∗(Q) now
consists of the following components.

• We store the witness set W in a data structure
D1 that allows us to report the set of segments
that intersect the query rectangle Q.
• We store the vertical edges of the rectangles in O

in a data structure D2 that allows us to decide
if the set V(Q) of edges that completely cross a
query rectangle Q from top to bottom, is non-
empty. The data structure should also be able to
report all (rectangles corresponding to) the edges
in V(Q).
• We store the horizontal edges of the rectangles in
O in a data structure D3 that allows us to decide
if the set H(Q) of edges that completely cross a
query rectangle Q from left to right, is non-empty.
• We store O in a data structure D4 that allows

us to report the set of rectangles that contain a
query point q.

Step 1 of our query process, where we find the seed
set O∗(Q), now proceeds as follows.

1(i) Perform a query in D1 to find all witness segments
intersectingQ. For each reported witness segment,
insert the corresponding rectangle into O∗(Q).

1(ii) Perform queries in D2 and D3 to decide if the sets
V(Q) and H(Q) are both non-empty. If so, report
all rectangles corresponding to edges in V(Q) and
put them into O∗(Q).

1(iii) For each corner point q of Q, perform a query in
D4 to report all rectangles in O that contain q,
and put them into O∗(Q).

The next lemma proves the correctness of this proce-
dure. We prove the lemma in the full version using a
case analysis.

Lemma 3 Let ri, rj be two rectangles in O such that
(ri ∩ rj)∩Q 6= ∅. Then at least one of ri, rj is put into
O∗(Q).

In the second part of the query procedure we need to
report, for each rectangle ri in the seed set O∗(Q), the

rectangles rj ∈ O intersecting ri ∩Q. Thus we need
to store O in a data structure D5 that allows us to
report all rectangles intersecting an axis-aligned query
rectangle. Putting everything together, and plugging
in standard data structures as before, we obtain the
following theorem.

Theorem 4 Let O be a set of n axis-aligned rectan-
gles in the plane. Then there is a data structure that
uses O(n log n) storage and that allows us to report,
for any axis-aligned query rectangle Q, all pairs of
rectangles ri, rj in O such that ri intersects rj inside
Q in O((k + 1) log n log∗ n) time, where k denotes the
number of answers.

3 Objects with small union complexity

In the previous section we presented efficient solutions
for the case where O consists of axis-aligned rectangles.
In this section we obtain results for classes of constant-
complexity objects with small union complexity. More
precisely, we need that U(n), the maximum union
complexity of any set of n objects from the class, is
small. This is for instance the case for disks (where
U(n) = O(n) [8]) and for locally fat objects (where
U(n) = O(n2O(log∗ n)) [1]).

Recall that in Step 2 of the query algorithm of the
previous section, we needed to perform a range query
with oi ∩Q for each oi ∈ O∗(Q). When we are dealing
with curved objects, this will be an expensive query.
Hence, to deal with curved objects we modify our
query procedure.

1. Compute a seed set O∗(Q) ⊆ O of objects such
that the following holds: for any two objects oi, oj
in O such that oi and oj intersect inside Q, both
oi and oj are in O∗(Q).

2. Compute all intersecting pairs of objects in the set
{oi∩Q : oi ∈ O∗(Q)} by a plane-sweep algorithm.

The main question is now how to efficiently find O∗(Q),
which should contain all objects intersecting at least
one other object inside Q. Next we describe how to
do this when the union complexity U(m) is small. For
each object oi ∈ O we define o∗i :=

⋃
oj∈O,j 6=i(oi ∩ oj)

as the union of all intersections between oi and all
other objects in O. Let |o∗i | denote the complexity
(that is, number of vertices and edges) of o∗i .

Lemma 5
∑n
i=1 |o∗i | = O(U(n)).

Proof. Consider the arrangement induced by the ob-
jects in O. We define the level of a vertex v in this
arrangement as the number of objects from O that
contain v in their interior. We claim that every vertex
of any o∗i is a level-0 or level-1 vertex. Indeed, a level-k
vertex for k > 1 is covered by k objects and therefore it
will be in interior of the intersection of those k objects.
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This is easily seen to imply that it cannot be a vertex
of any o∗i .

Since the level-0 vertices are exactly the vertices of
the union of O, the total number of level-0 vertices
is U(n). Moreover, it follows from the Clarkson-Shor
technique [5] that the total number of level-1 vertices
is O(U(n)) as well. The lemma now follows from the
fact that each level-0 or level-1 vertex contributes to
at most two different o∗i ’s. �

Our goal in Step 1 is to find all objects oi such that
o∗i intersects Q. To this end consider the connected
components of o∗i . If o∗i intersects Q then one of these
components lies completely inside Q or an edge of Q
intersects o∗i . By taking a representative point inside
every component of each o∗i and storing these points in
a structure for orthogonal range searching, we can find
the components that are completely inside Q, leading
to the following lemma.

Lemma 6 We can find all o∗i that have a component
completely inside Q in O(log n+ k) time, where k is
the number of pairs of objects that intersect inside Q,
with a data structure that uses O(U(n) log n) storage.

Next we describe a data structure for reporting all
o∗i intersecting a vertical edge of Q; finding the o∗i
intersecting a horizontal edge can be done in a similar
way.

Our data structure is a balanced binary tree T ,
whose leaves in T are in one-to-one correspondence
to the objects in O. For an (internal or leaf) node
ν in T , let T (ν) denote the subtree rooted at ν and
let O(ν) denote the set of objects corresponding to
the leaves of T (ν). Define U(ν) :=

⋃
oi∈O(ν) o

∗
i . At

node ν, we store a point-location data structure on the
trapezoidal map of U(ν). (If the objects are curved,
then the “trapezoids” in the map actually have curved
top and bottom edges.)

Lemma 7 The tree T uses O(U(n) log n) storage and
allows us to report all o∗i intersecting a vertical edge s
of Q in O((t+ 1) log2 n) time, where t is the number
of answers.

Proof. To report all o∗i intersecting s we walk down T ,
only visiting those nodes ν such that s intersects U(ν).
This way we end up in the leaves corresponding to
the o∗i intersecting s. To decide if we have to visit
a child ν of an already visited node, we do a point
location with both endpoints of s in the trapezoidal
map of U(ν). Now s intersects U(ν) if and only if
one of these endpoints lies in a trapezoid inside U(ν)
and/or the two endpoints lie in different trapezoids.
Thus we spend O(log n) time to decide if we have to
visit a node. Since we visit O(k log n) nodes, the total
query time is as claimed.

To analyze the storage we claim that the sum of
the complexities of U(ν) over all nodes ν at any fixed
height of T is O(U(n)). The bound on the storage
then follows from the fact that the point location
data structures on the trapezoidal maps take linear
space [6], and the fact that the height of T is O(log n).
It remains to prove the claim. Consider a node ν at
a given height h in T . It can be shown that each
vertex in U(ν) is either a level-0 or level-1 vertex of
the arrangement induced by the objects in O(ν), or
a vertex of o∗i , for some oi in O(ν). The number of
vertices of the former type isO(U(|O(ν)|)), which sums
to O(U(n)) over all nodes at height h. By Lemma 5
the number of vertices of the latter type over all nodes
at height h sums to O(U(n)). �

Theorem 8 Let O be a set of n constant-complexity
objects in the plane from a class of objects such that
the maximum union complexity of any m objects from
the class is U(m). Then there is a data structure
that uses O(U(n) log n) storage and that allows us
to report for any axis-aligned query rectangle Q, in
O((k + 1) log2 n) time all pairs of objects oi, oj in O
such that oi intersects oj inside Q, where k denotes
the number of answers.
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Computing the Smallest Color-Spanning Equaliteral Triangle

Javad Hasheminejad∗ Payam Khanteimouri ∗ Ali Mohades ∗

Abstract

Let P be a set of n colored points with k colors in
the plane. A region is color-spanning if it contains
at least one point from each color. In this paper, we
study the problem of computing the smallest color-
spanning equilateral triangle whose one side is paral-
lel to x-axis. We first show that the number of the
minimal color-spanning equilateral triangles is O(n)
in the worst case. Then, we present an efficient algo-
rithm running in O(n log n) time to solve the prob-
lem. Finally, we show that our algorithm can be
used to compute a 2-approximation of the smallest
perimeter color-spanning convex hull which is the first
subquadratic time algorithm with approximation fac-
tor 2.

1 Introduction

Background. In many practical problems in com-
putational geometry, the input points are imprecise.
An imprecise point can be defined by a region where
the exact location of the point can be anywhere in-
side the region [7]. In a case that an imprecise point
is modeled with a discrete range such as a point set,
each imprecise point can be represented by a set of
points which determines all possible locations of that
point. Therefore, by assigning a distinct color to each
imprecise point, a set of k imprecise points can be
modeled by n points with k colors, where n is the
number of possible locations for all imprecise points.
In this point of view, the problem is to choose exactly
k points with different colors in such a way that a ge-
ometric structure e.g. convex hull, diameter, bound-
ing box, etc. gets minimized or maximized —see [5]
and references therein. Furthermore, we have similar
models in other areas such as facility location, statis-
tical clustering, pattern recognition and generalized
range searching [1, 3, 8].

Related works. Suppose we are given a set of n
points with k colors in the plane. A region is said
to be color-spanning if it contains at least one point
from each color. Abellanas et al. [1] presented an al-
gorithm to compute the smallest color-spanning axis-
parallel rectangle in O(n(n − k) log2 k) time. The
problem of computing the smallest color-spanning cir-
cle can be solved in O(nk log n) time using the up-

∗Department of Mathematics and Computer Science,
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per envelope of Voronoi surfaces [4]. In addition,
Khanteimouri et al. [6] presented an O(n log2 n) time
algorithm to compute the smallest color-spanning
axis-parallel square. Moreover, For the problem of
computing the smallest perimeter color-spanning con-
vex hull, Ju et al. [5] showed the NP-hardness of the
problem, and they proposed a π-approximation algo-
rithm running in O(n2+nk log k) time. They also pro-
posed a

√
2-approximation algorithm for the problem

running in the same time of computing the smallest
color-spanning rectangle.

Our Results. In this paper, we study the problem
of computing the smallest color-spanning equilateral
triangle whose one side is parallel to x-axis (SCST,
for short). Beside the applications of this problem in
location planning, the perimeter of the SCST approx-
imates the perimeter of the smallest color-spanning
convex hull. In Section 2, we first show that there are
O(n) minimal color-spanning triangles in the worst
case. Then, we present an O(n log n) time algorithm
to compute the SCST. Next in Section 3, we show that
the perimeter of the SCST gives a 2-approximation
for the perimeter of the smallest color-spanning con-
vex hull which significantly improves the first result
presented in [5]. In fact, no subquadratic time algo-
rithm with approximation factor 2 was known before.
Finally, we conclude in Section 4.

2 Computing the Smallest Color-Spanning Equi-
lateral Triangle

In this section, we focus on the problem of computing
the smallest color-spanning equilateral triangle whose
base is parallel to the x-axis. We start by some pre-
liminaries and definitions.

2.1 Preliminaries and Definitions

Let S = {s1, · · · , sn} be a set of points in the plane.

• For a point si ∈ S, wedge of si is the portion of
the plane restricted between two half-lines with
slopes ±

√
3 starting from si towards increasing

y-coordinates—see Figure 1-(a). We denote the
wedge of si by W(si).

• We say si dominates sj if and only if W(si) ⊆
W(sj). A point si is maximal if it is not domi-
nated by any other point in S.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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• For a set of m functions F = {f1, · · · , fm} we
define LF as the lower envelope of F . Pre-
cisely, LF (x) = minf∈F f(x). Similarly, UF =
maxf∈F f(x) denotes the upper envelope of F .

(a) (b)

Figure 1: (a) The wedge of point si. (b) si dominates
point sj .

Now, let P = P1 ∪P2 · · · ∪ Pk be the given set of n
points with k colors in the plane where Pi is the set
of points with color i.

• We define Li as the lower envelope of color i
which is the lower envelope of boundaries ofW(p)
for all p ∈ Pi.
• Li consists of mountains and valleys. In fact, a

valley is a point in Pi that does not dominate
any other point of Pi and a mountain is a lo-
cal maximum point which appears between two
consecutive valleys. In addition, we define two
additional mountains at −∞ and +∞ for each
Li—see Figure 2 for more illustration.

Valley

Additional
Mountains

Mountain

Figure 2: The mountains and valleys on Li.

• A minimal color-spanning object contains at least
one point from each color and any sub-region of
it does not contain all colors. We can assume
without loss of generality that a minimal color-
spanning equilateral triangle with the base paral-
lel to x-axis (minimal CST, for short) is defined
with two or three points with unique colors on its
edges, as illustrated in Figure 3.

2.2 Algorithm

We now present our algorithm to compute the SCST.
The sketch of our algorithm is as follows. We sweep
the points with a horizontal line l from top to bot-
tom and we test all minimal CSTs when an insertion
occurs.

Figure 3: Two types of a minimal color-spanning equi-
lateral triangle.

We first show a new view of a color-spanning tri-
angle whose base lies on some horizontal line l. Let
Pl ⊆ P be the subset of points above l and L =
{L1, · · · ,Lk} be the set of lower envelopes of all col-
ors for the points in Pl. Moreover, let R be the region
above the upper envelope UL. We present the follow-
ing lemma.

Lemma 1 An equilateral triangle T whose base lies
on line l is color-spanning if and only if its apex be-
longs to R.

Proof. Let p′ be some point in Pl. Clearly, triangle
T with base on l contains p′ if and only if its apex
belongs to W(p′). Since the region above Li is the
union of all wedges of points with color i, the trian-
gle T with apex located at a point above Li contains
at least one i-colored point. From the fact that R is
the intersection of regions above Li for all i, we con-
clude that T is color-spanning if its apex belongs to R.
The converse implication can be proved in a similar
way. �

Now, suppose we sweep the points with line l.
When the sweep line l crosses a new point p ∈ P
with color i, the insertion of p changes the struc-
ture Li—see Figure 4. Thus, the upper envelope may
also be changed. To see the relation between minimal
color-spanning triangles and the upper envelope of de-
scribed structures, we present the following lemma.

eliminated part

Figure 4: The apex of a minimal CST is placed on a
valley point of UL.
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Lemma 2 A triangle T with apex q is a minimal CST
if and only if q appears for the first time as a valley
point on some UL during the plane sweep.

Proof. Consider the event that l encounters the point
p with color i and q appears as a valley point on UL
for the first time. Let T be the triangle defined by the
apex q with base on l. As q belongs to UL, triangle T
is color-spanning according to Lemma 1. To conclude
that T is minimal, we first show that p is the unique
point with color i included in T . Since q appeared
for the first time, therefore q belongs to W(p) and
T contains p on its bottom edge. Besides, since q
appeared for the first time, it must be a point below
the structure Li before the insertion of point p. Thus,
T could not contain any point of color i just before
the time l reaches p. On the other hand, each valley
point of UL can be either a valley of some Lj or an
intersection point of Lj and Lt for some colors j and
t—see Figure 4. These cases determine the two types
of minimal CSTs which are illustrated in Figure 3.
We can simply prove the converse implication in a
similar way, but we omit the details due to the space
constraint. �

Therefore, we can state that the number of mini-
mal CSTs is equal to the number of distinct valleys
that are created on UL during the plane sweep pro-
cess. Although there is a configuration of points P
in which the lower envelops Li intersect each other in
Ω(nk) points, we show that only O(n) distinct valley
points can appear on UL. Let appi be the number of
mountains that appear for the first time on UL when
l reaches point pi. Similarly, let deli be the number
of deleted mountains. We first present the following
lemma.

Lemma 3 The number of newly appeared valleys is
at most deli + appi when l crosses point pi.

Proof. We can partition the set of newly appeared
mountains into m components of consecutive moun-
tains of UL, as illustrated in Figure 5. Each com-
ponent should be placed under at least one deleted
mountain. It is easy to see that the number of newly
appeared valleys that are located among these com-
ponents is at most appi + m—see Figure 5. In ad-
dition, there could be some deleted mountains such
that there is not any newly appeared mountain below
them. The number of this type of deleted mountains
is at most deli − m. We can simply show that the
number of newly appeared valleys of this type is at
most deli − m. Therefore, since a deleted mountain
never reappears we conclude the lemma.

�

From the fact that each point pi creates exactly
two new mountains on Li the total number of created

Two components

Figure 5: Squares and filled circles indicate respec-
tively the newly appeared and the deleted mountains.

mountains during the sweep process is 2n. Moreover,
each mountain can appear on UL and is deleted once.
Thus, we conclude the following lemma according to
Lomma 3.

Lemma 4 There are O(n) minimal CSTs in the
worst case.

Brodal et al. [2] presented a data structure to main-
tain the planar maximal points with O(log n) worst
case time per insertion or deletion. They define
that a point p = (px, py) dominates another point
q = (qx, qy) if inequalities px ≥ qx and py ≥ qy hold.
Moreover, they showed their data structure allows re-
porting the maximal points that dominate a given
query point q in O(log n + r) time, where r is the
number of reported points.

It is easy to see that we can adopt the definition of
maximal points used in this paper with the one de-
fined in [2]. Furthermore, to maintain the upper en-
velope UL it suffices to maintain the maximal points
of mountains instead of the original points. A valley
on UL can be obtained by two consecutive maximal
mountain points. We exploit the data structure pre-
sented in [2] to perform the insertion and deletion of
mountains. Moreover, we use a maximal reporting
query to obtain the newly appeared valleys. In the
following we explain the details.

Consider the event that l passes point p with color
i. First, we intersect the boundary of W(p) with Li.
Let s and t be the intersected points such that sx ≤ tx
(s or t may be equal to −∞ and +∞ respectively).
Moreover, let Q = {q1, · · · , qm} be the sorted list of
points that appear on Li from s to t. First, we do
the insertions of mountains s and t. Now, to perform
the deletion of point qi and report the newly appeared
valleys we do as follows. As the first case, suppose qi
is not a point of UL. In this case, we only perform
a deletion of qi and no new valley gets reported. In
the other case, qi is a maximal mountain point. To
report the new valleys that appear by deletion of qi,
we first compute the query point q′i by finding the two
adjacent mountains of qi on UL—see Figure 6. Then,
we perform a deletion of qi from the data structure
and perform a maximal reporting with query point q′i
to compute the newly appeared valleys. Therefore,
we present the following theorem.
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(after update)

Figure 6: Updating the upper envelope UL and re-
porting the newly appeared valleys.

Theorem 5 For a given set of n points with k colors
in the plane, the problem of computing the SCST can
be solved in O(n log n) time.

Proof. We can compute s and t by performing a bi-
nary search in the sorted list of Li in O(log n) time.
Since there are totally 2n mountains, all insertions
and deletions take O(n log n) time. On the other
hand, the data structure presented in [2] allows us to
compute each query point q′i in O(log n) time. Since
we perform O(n) queries in such a way that each min-
imal CST gets reported only once, we conclude from
Lemma 4 that the query takes O(n log n) time in to-
tal. Therefore, the running time of the algorithm is
O(n log n). �

3 Approximating the Smallest Perimeter Color-
Spanning Convex Hull

In this section, we show that the SCST gives a con-
stant factor approximation for the smallest perimeter
color-spanning convex hull (SCSCH, for short). The
problem of computing the SCSCH is to choose one
point from each color in such a way the perimeter of
convex hull of the selected points gets minimum. We
present the following theorem.

Theorem 6 There is a 2-approximation algorithm
for computing the SCSCH running in O(n log n) time.

Proof. Let T be the SCST computed by the algo-
rithm described in previous section. Moreover, let
CH∗ be the SCSCH. Since T is color-spanning there is
a convex hull CH inscribed in T . Therefore, inequal-
ities P (CH∗) ≤ P (CH) ≤ P (T ) hold, where P (.) de-
notes the perimeter function. On the other hand, let
T ′ be the smallest equilateral triangle which contains
CH∗. For the points included in T ′, we can show by
primitive calculations that the perimeter of any con-
vex hull that touches the edges of T ′ is at least half of

the perimeter of T ′—consider the equilateral triangle
with vertices placed at the middle points of T ′ edges.
Therefore, inequalities P (CH∗) ≥ 1

2P (T ′) ≥ 1
2P (T )

also hold and we conclude that the SCST computes a
2-approximation of SCSCH. �

4 Conclusion

In this paper, we presented a novel idea to solve the
problem of computing the SCST. We first proved that
there are O(n) minimal CSTs. Then, we proposed
an O(n log n) time algorithm to compute the SCST
which exploits the data structure presented in [2]. Fi-
nally, we showed that a 2-approximation of the SC-
SCH can be computed in O(n log n) time by finding
the SCST which significantly improves one of the ear-
lier results.
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Elastic Shape Matching for Translations under the Manhattan Norm

Christian Knauer∗ Luise Sommer∗ Fabian Stehn∗

Abstract

The Elastic shape matching (ESM) framework is a
generalization of the well-studied geometric shape
matching problems. For a geometric shape match-
ing problem, one seeks a single transformation (drawn
from an appropriate class of transformations) that if
applied to a geometric object (the pattern) minimizes
the distance of the transformed object to another ge-
ometric object (the model).

In an ESM problem, the pattern is partitioned into
parts which are transformed by a transformation en-
semble (a collection of transformations) to minimize
the distance of the individually transformed parts to
the model under the constraint, that some transfor-
mations of the ensemble have to be similar.

We present algorithms to solve the decision variant
of a ESM problem under translations for point sets
under Hausdorff distance (with respect to the Man-
hattan metric and other polygonal metrics), if the de-
pendencies of the transformations that are forced to
be similar form a tree.

1 Introduction

The following problem and definitions will be stated
for points and vectors a ∈ R2, written as a =
(a.x, a.y).

Definition 1 The directed Hausdorff distance of a
point set A ⊆ R2 to a point set B ⊆ R2 under Man-
hattan norm is defined as

−→
h (A,B) := max

a∈A
min
b∈B
||a− b||1,

where || · ||1 denotes the Manhattan norm (L1 norm).

Problem 1 (ESM for Points under Translations)

Given: P = {p1, . . . , pn} point set (the pattern)

Q = {q1, . . . , qm} point set (the model)

G = (V,E) graph with

V = {i | 1 ≤ i ≤ n} and

E ⊆ {{i, j} | i, j ∈ V }
δ a parameter

∗Institut für Angewandte Informatik, Universität Bayreuth
[christian.knauer|luise.sommer|fabian.stehn]@uni-bayreuth.de

Question: Are there n translations T = (t1, . . . , tn) so
that

max

(−→
h (T (P ), Q), max

{i,j}∈E
||ti − tj ||1

)
≤ δ, (1)

where T (P ) := {(pi.x+ ti.x, pi.y+ ti.y) | 1 ≤ i ≤ n}?

The objective (Equation 1) is twofold: the task is to
minimize the Hausdorff distance of the transformed
pattern to the model while simultaneously minimizing
the dissimilarity of translations that are paired in G.
The similarity of two translations is measured by the
norm of their translation vector difference.

The graph G is called neighborhood graph as it
encodes the pairs of subpatterns that have to be
matched by similar transformations. The computa-
tional complexity of a strategy to decide Problem 1
depends in the structure of G. It has been shown in [1]
that the decision problem is NP-complete for trans-
lations of point sets under Hausdorff distance (with
respect to the Euclidean metric), if all transforma-
tions have to be pairwise similar (G is complete). In
this abstract we restrict our attention to neighbor-
hood graphs that are trees.

ESM finds application in fields where provable pre-
cise alignments have to be computed in the presence
of non-rigid deformation, such as for soft-tissue regis-
trations for computer-guided medical interventions.

2 An Algorithm solving Problem 1

The set Ip,q of admissible translations that move a
point p ∈ P at least δ-close to a point q ∈ Q with
respect to the Hausdorff distance under Manhattan
norm can be described by a square with edge length
a :=

√
2δ centered in q − p:

Ip,q := {t ∈ T | ||p+ t− q||1 ≤ δ}.

Similarly, the set Ip,Q of translations that move a
point p ∈ P at least δ-close to some point of Q is
given as Ip,Q :=

⋃
q∈Q Ip,q: a union of m squares of

the same size.
We will denote a square with edge length a centered
in the origin by �.
Since G = (V,E) is a tree, the algorithm starts with
picking an arbitrary node r ∈ V and henceforth con-
siders Gr, the tree rooted in r. For internal nodes
v ∈ V let c(v)1, . . . , c(v)nv

be the children of v. For
any node v ∈ V let Tv be the subtree of Gr with root

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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v.
The strategy for deciding whether there is a set T of
translations that satisfies Equation (1) has iterative
structure. The basic idea is to propagate admissible
translations from bottom-to-top by contracting inner
nodes with their children and by appropriately merg-
ing their admissible transformations. That is, start-
ing with Gr, the algorithm chooses an inner node and
contracts it which leads to a new tree. If an internal
node v has been contracted to a single node with an
non-empty region Iv′,Q of admissible translations, it
is possible to choose valid translations for all nodes of
Tv.
In each iteration of the algorithm, we call the tree
from which a node is selected the current tree. In
each step of the algorithm, a vertex v of the current
tree is selected with the property that all children of v
are leafs. Then, v and the children of v are contracted
to a new inner node v′ which itself becomes a leaf in
the resulting tree. To compute the set Iv′,Q of admis-
sible regions for the new leaf v′ we proceed as follows:
first, we inflate all regions Ic(v)i,Q by δ for 1 ≤ i ≤ nv
which results in a set Iδc(v)i,Q := Ic(v)i,Q ⊕ �, where
⊕ denotes the Minkowski sum. Note, that inflating
some shifted � by δ leads to a square with edge length
2a and circumcircle with radius 2δ. The admissible
regions for the new node v′ are given by:

Iv′,Q :=

(
nv⋂

i=1

Iδc(v)i,Q

)
∩ Iv,Q.

This process is iterated until either of the following
two cases occurs:

1. For some node v we have Iv,Q = ∅:
In this case, the process stops and no is returned
as the answer to Problem 1.

2. The root r is contracted and Ir′,Q 6= ∅:
The algorithm terminates and returns yes as the
answer to Problem 1.

The runtime of this strategy depends on the de-
scription complexity of the set of transformations that
are stored in each node during the contraction of G
to a single node. To analyze these sets, we need to
introduce some notation.

Definition 2 Let B ⊂ R2 be a closed connected set.
A closed set A ⊂ R2 is called B-fat, if the following
holds: For every point a ∈ A there is a translation
t ∈ R2 and a point b ∈ B with a = t+ b and b̃+ t ∈ A
for every b̃ ∈ B.

Lemma 1 ([3]) The union of m regular k-gons has
a description complexity of O(km).

Lemma 2 Let at some point of the algorithm c(v)i
with i ∈ {1, . . . , nv} be the children of a node v which

Figure 1: sets Iδc(v)1,Q (blue) and Iv,Q with focus on
edges ev and ec(v)1

all have been contracted with their children before and
hence are leafs in the current tree Tv. If every Ic(v)i,Q
consists of mi vertices and edges for i ∈ {1, . . . , nv},
the following holds:

1. Set Iv′,Q :=
(⋂nv

i=1 I
δ
c(v)i,Q

)
∩Iv,Q has description

complexity O(nv(nvm+
∑nv

i=1mi)).

2. Set Iδv′,Q has description complexity O(nvm +∑nv

i=1mi).

Proof. Let all vertices have pairwise different x- and
y-coordinates for now. Lets first take a closer look at
the regions that constitute Iv′,Q:
a) The set Iv,Q consists of a union of shifted versions
of � with at most 4m vertices and edges and covers an
area of measure at most a2m; b) Every Ic(v)i,Q can be
described by unions and intersections of shifted and
inflated versions of � and has a surface with size up
to a2m since it has either already been a leaf of Tv in
the beginning or is the result of a contraction of other
nodes. Hence every Iδc(v)i,Q covers an area of measure

up to 4a2m.
Each set can be described by a list of its boundary
edges where every edge is of one of four types: it can
have a slope of ±1 and the interior of the set can ei-
ther be above or below the edge.
Every edge in Iv′,Q either originates from an edge of
Iv,Q or from an edge of Iδc(v)i,Q for some i. Since the
description complexity of Iv′,Q is equal to the maxi-
mum number of its boundary edges, we can count in
how many parts the edges of Iδc(v)i,Q and Iv,Q can be
cut in order to determine its complexity.
The sets Iv,Q and all Iδc(v)i,Q are obviously �-fat and
as Iv,Q is a collection of m pseudo discs and hence has
a linear description complexity, see Lemma 1.

Part 1 of Lemma 2: Consider an arbitrary edge
ev of Iv,Q: ev can only be intersected by edges of
Iδc(v)i,Q that are orthogonal to ev. Let ec(v)i be such

an edge intersecting ev in s. Since Iδc(v)i,Q is �-fat
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Figure 2: intersecting Iδc(v)1,Q and Iv,Q with focus on
edge ec(v)1

we can place a square �∗ of side length a so that it
has s on its boundary and is completely contained
in Iδc(v)i,Q. As ev has a length of a and �∗ has a
side length of a, one endpoint of ev has to be in
�∗, see Figure 1. As a consequence, ev can be cut
in at most two pieces by edges of Iδc(v)i,Q. Since(⋂nv

i=1 I
δ
c(v)i,Q

)
∩ ev =

⋂nv

i=1(ev ∩ Iδc(v)i,Q) and the

parts of ev that remain after intersection with Iδc(v)i,Q
resemble intervals, the maximum number of pieces of(⋂nv

i=1 I
δ
c(v)i,Q

)
∩ev is the sum of the number of pieces

of all ev ∩ Iδc(v)i,Q, which is 2nv. Hence there are at
most 8nvm edges in Iv′,Q that originate from an edge
of Iv,Q.
By similar arguments, an edge of Iδc(v)i,Q of length k

can be cut by Iv,Q in at most 1 + dkae disjoined pieces
that remain as edges in Iv′,Q, see Figure 2. As every
Iδc(v)j ,Q with i 6= j is �-fat as well, the same holds

for intersecting Iδc(v)i,Q with some Iδc(v)j ,Q. As Iδc(v)i,Q
is �-fat and the size of its surface is at most 4a2m
the sum of the lengths of all edges of Iδc(v)i,Q which

are of the same type is less than 4a2m
a = 4am. To

get the maximum amount of edges in Iv′,Q that orig-
inate from edges of Iδc(v)i,Q we assume that Iδc(v)i,Q
has mi − 4 very short edges which cause at most
two edges in Iv′,Q and four long edges with length
at most 4am. Therefore the maximum number of
edges in Iv′,Q originating from edges of some Iδc(v)i,Q
is nv(2mi + 16m − 4), which gives a bound on the
number of edges in Iv′,Q of

4n2v(4m− 1) + 2nv(4m+

nv∑

i=1

mi), (2)

which proves part 1.
Part 2 of Lemma 2: Let e′c(v)i and e′′c(v)i be two

edges in Iv′,Q which result from cutting the same edge
ec(v)i of Iδc(v)i,Q. Inflating Iv′,Q by δ in Manhattan
norm equates to adding a shifted version of � centered

Figure 3: inflating Iv′,Q with focus on the magenta
and resulting blue edges

at all points of its boundary since Iδv′,Q = Iv′,Q ⊕ �.
Let ev be some boundary edge of Iv′,Q, its correspond-
ing boundary edge e′v of Iδv′,Q will be shifted parallel
by an amount of a2 and will be extended by a

2 at both
ends. Therefore e′c(v)i and e′′c(v)i will merge in Iδv′,Q
to one edge, if they are no more than a apart in Iv′,Q
(the same arguments hold for edges of Iv,Q), see Fig-
ure 3. This fact includes that every edge of Iδc(v)i,Q
with length k can cause at most dkae edges in Iδv′,Q
and every edge of Iv,Q can cause at most one edge in
Iδv′,Q, no matter in how many pieces it has been cut
before.
We again use the fact that Iδc(v)i,Q is �-fat and covers

an area of measure at most 4a2m: The largest number
of edges in Iδv′,Q that originate from edges of Iδc(v)i,Q
is achieved when Iδc(v)i,Q has mi − 4 short edges each

causing at most one edge in Iδv′,Q and four long edges
of length at most 4am each causing up to 4m new
edges.
Summing up all these edges results in at most mi−4+
16m edges that arise from edges of Iδc(v)i,Q for every

1 ≤ i ≤ nv and 4m edges with source Iv,Q in Iδv′,Q.

Hence the maximum number of edges in Iδv′,Q is

4nv(4m− 1) + 4m+

nv∑

i=1

mi. (3)

This proves part 2.
Please note that dropping the general position as-

sumption of the vertices of Ic(v)i,Q and Iv,Q has the
only effect that (close) edges of the same type may
merge during the process, which only shortens the
largest possible length of edges in the above argu-
ments. �

Theorem 3 Problem 1 can be decided in
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O(n2m(logm + log n)) time for neighborhood
graphs that are trees (also when reporting a witness
for a yes-instance).

Proof. The first step is to compute the regions Ip,Q
for all p ∈ P , the initial admissible translations stored
in the nodes of G. These sets are represented by the
boundary edges of squares centered in q − p for each
q ∈ Q. It takes O(m) time to determine Ip,Q for a
fixed p. Since the squares form a collection of pseu-
dodiscs their union has description complexity O(m)
which can be computed in a sweep line manner in
O(m logm) time.
Let Tv be some subtree of Tr of kv nodes and v 6= r.
We let the algorithm run on this subtree until it stops
or all nodes have been contracted to a new node v′

and the resulting set Iv′,Q has been inflated to Iδv′,Q.
This set has description complexity O(kvm) accord-
ing to Lemma 2, recursive application of equation (3).
Each child of the root r has a corresponding subtree
Tc(r)i containing ki nodes for 1 ≤ i ≤ nr. Consider
one fixed c(r)i. Applying the algorithm on Tc(r)i and
inflating the admissible regions of its root results in
a set Iδc(r)′i

of admissible translations for all nodes of

Tc(r)i . The set Iδc(r)′i
is �-fat and has description com-

plexity O(kim) due to Lemma 2, part 2. After the
last step of the algorithm, the description complex-
ity of the set of admissible translations stored in r is
O(n2rm+ nrnm) = O(n2m), as

∑nr

i=1 ki = n− 1, due
to the first part of Lemma 2.

The total runtime of the algorithm stems from the
time that is needed to carry out the union/intersection
operations to compute the intermediate admissible
transformations Iv′,Q for all nodes v of Tr. According
to the first part of Lemma 2, Iv′,Q has a complexity
of O(n2vm + nvnm) (where nv is the number of chil-
dren of v), as each Iδc(v)i has description complexity

O(nm).
Adding up the sizes of these sets over all nodes v

of Tr for wich these admissible translations are com-
puted during the algorithm results in a total complex-
ity of O(n2m). The sum of the runtime that has to be
spend in each node to perform the union/intersection
operations on sets of size O(n2vm + nvnm) can be
bounded from above by considering the respective
runtime for a set of total size O(n2m), hence we can
conclude that the total runtime of the algorithm is
O(n2m(logm+ log n)). �
Note, that all results and arguments also hold when
considering the L∞ norm instead of the L1 norm.
In many ESM applications, considering the Hausdorff
distance under the Euclidean norm seems to be a more
natural distance measure than the Hausdorff distance
under L1 norm. Indeed, a very similar strategy (com-
puting, inflating and propagating admissible regions
from bottom-to-top) can be applied to decide Prob-
lem 1 in this setting. However, inflating regions with

a L2 ball (by computing the Minkowski sum) instead
of a L1 ball increases the complexity of the respec-
tive regions and hence makes it hard to analyze the
runtime of this method.

But as a L1 ball of radius δ is contained in a L2

ball of that radius, we can use the above algorithm
to approximate the Euclidean setting as formulated
in Corollary 4.

Corollary 4 The algorithm discussed above gives an√
2-approximation for Problem 1 with same settings

and under Euclidean norm.

Approximating here means that if δoptL1
is the optimal

(smallest) value in the L1 setting, the optimal value
δoptL2

in the Euclidean setting is bounded by

δoptL2
≤ δoptL1

≤
√

2 δoptL2
.

It is easy to see that the complexity of inflated admis-
sible regions does not increase when the unit ball of
the underlying metric is a regular polygon. This al-
lows to improve upon the approximation factor: Let
P2b be a regular polygon with 2b ≥ 4 vertices, b ∈ N,
centered in the origin with radius 1. P2b is centrally-
symmetric as it has an even number of corners and
induces a norm and hence a metric to which we refer
as the P2b-metric, see [2] for further information.

Theorem 5 Problem 1 under P2b-metric can be de-
cided in O(b2n3m2(logm + log n + log b)) time (also
when reporting a witness for a yes-instance).

Due to space limitations we skip the proof of Theo-
rem 5.

Theorem 6 Given an integer k ≥ 2 and b :=⌈
π
4

√
2k
⌉

Problem 1 under P2b-metric gives an
(
1 + 1

k

)
-approximation for Problem 1 with same set-

tings and under Euclidean norm.

Due to space limitations we skip the proof of Theo-
rem 6.
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Combinatorics of edge 2-transmitter art gallery problems

Sarah Cannon∗ Thomas G. Fai† Justin Iwerks‡ Undine Leopold§ Christiane Schmidt¶

Abstract

We give sufficiency and necessity results for edge 2-
transmitters in general, monotone, orthogonal and
monotone, and orthogonal polygons.

1 Introduction

The traditional art gallery problem (AGP) consid-
ers placing guards in an art gallery—modeled by a
polygon—so that every point in the room can be seen
by some guard. A similar question asks how to place
wireless routers so that an entire room has a strong
signal. Observation shows that often not only the dis-
tance from a modem, but also the number of walls a
signal has to pass through, influences signal strength.

Aichholzer et al. [1] first formalized this problem by
considering k-modems (k-transmitters), devices whose
signal can pass through at most k walls. Analogous
to the AGP, two main questions can be considered:
(1) Given a polygon P , can a minimum cardinality k-
transmitter cover be computed efficiently? (2) Given
a class of polygons of n vertices, what are lower and
upper bounds on the number of guards needed to
cover a polygon from this class?

For the classical AGP, the complexity question (1)
was answered with NP-hardness for many variants:
Lee and Lin [8] gave the result for simple polygons.
In [4], we show the minimum point 2/k-transmitter
and edge 2-transmitter problems are NP-hard. An-
swers to (2) are often referred to as “Art Gallery the-
orems”, e.g., Chvátal’s tight bound of bn3 c for sim-
ple polygons [5]. For k-transmitters (ktr), Aichholzer
et al. [1] showed d n2k e ktr are always sufficient and
d n
2k+4e ktr are sometimes necessary to cover a mono-

tone n-gon1; for monotone orthogonal polygons, they
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1The stated lower bound of dn/(2k+2)e given in [1] is a typo,
and the example only necessitates dn/(2k + 4)e 2-transmitters.

Polygon Always Sometimes

Class Sufficient Necessary

General b 3n
10

c + 1 [10] bn
6
c (Th. 5)

Monotone d (n−3)
8

e (Th. 9) d (n−2)
9

e (Th. 6)

Mon. Orth. d (n−2)
10

e (Th. 13) d (n−2)
10

e (Th. 10)

Orthogonal b (3n+4)
16

c [3] d (n−2)
10

e (Th. 10)

Table 1: Results for edge 2-transmitters in simple n-gons.

gave a tight bound of d n−22k+4e ktr. Fabila-Monroy
et al. [6] improved the bounds on monotone polygons
to a tight value of d n−22k+3e (k even). Other publica-
tions explored k-transmitter coverage of regions other
than simple polygons, such as coverage of the plane
in the presence of line or line segment obstacles [2, 7].

For the classical AGP, variants were considered:
e.g., edge guards that monitor each point of the poly-
gon that is visible to some point of the edge. Bjorling-
Sachs [3] showed a tight bound of b 3n+4

16 c edge guards
for rectlinear polygons. For general polygons b 3n10 c+1
edge guards are always sufficient and bn4 c are some-
times necessary [10].

Our Results are summarized in Table 1. We con-
sider simple polygons only (of course, the necessity
results transfer to the case of polygons with holes).

2 Notations and Preliminaries.

A point q ∈ P is 2-visible from p ∈ P if the straight-
line connection pq intersects P in at most two con-
nected components. For a point p ∈ P , we define the
2-visibility region of p, 2VR(p), as the set of points
in P that are 2-visible from p. For a set S ⊆ P ,
2VR(S) := ∪p∈S2VR(p). A set C ⊆ P is a 2-
transmitter cover if 2VR(C) = P . Points used for a
2-transmitter cover are called (point) 2-transmitters.
An edge 2-transmitter e can monitor all points of P
that are 2-visible from some q ∈ e.

3 Point 2-transmitters

We start with observations on point 2-transmitter
covers that enable the edge 2-transmitter results.
Some proofs are omitted due to space limits.

Lemma 1 Every 5-gon can be covered by a point 2-
transmitter placed anywhere (boundary or interior).

Lemma 2 Let P be a 6-gon, e = {v, w} an edge of
P . A point 2-transmitter at v or at w covers P .

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Application of the Splitting Lemma of [1] to an
11-gon P for m = 6, resulting in a 6-gon L and a 7-gon R.

Proof. Let e = {v, w}. By the Two Ear Theorem [9],
there exists a diagonal from either v or w that splits
off a triangle T from P . Removing T leaves a 5-gon P ′

which has v or w as one of its vertices; call this vertex
ṽ. The addition of T does not increase the number
of connected components (CC) of the polygon on any
visibility ray starting at ṽ. That is, for any ray r
starting at ṽ, the number of CCs of r∩P ′ is the same
as the number of CCs of r∩P . Thus, all of P is visible
from a 2-transmitter on ṽ. �

Lemma 3 Every monotone 6-gon can be covered by
a single (point) 2-transmitter placed at one of its two
leftmost (or rightmost) vertices.

Lemma 4 (Splitting Lemma, [1]) Let P be a
monotone polygon with vertices p1, p2,..., pn, ordered
from left to right. For every positive integer m < n,
there exists a vertical line segment l and two mono-
tone polygons L and R such that

• L has m vertices and R has n−m+ 2 vertices.
• Either l is a chord of L and an edge of R, or l is

an edge of L and a chord of R.
• pm or pm+1 is an endpoint of l.
• Denote as L′ the subset of L left of l and denote

as R′ the subset of R right of l; then P = L′ ∪R′.

Proof Sketch. Consider a vertical line intersecting P
between pm−1 and pm. The edges e and f this vertical
line crosses, when extended, meet to either the right
or left of this line (assuming they are not parallel).
If they meet to the left, L and R are as in Fig. 1;
otherwise, the construction of L and R is reversed.

4 Edge 2-transmitters

4.1 General Polygons

For general n-gons, the upper bound of b 3n10 c+ 1 edge
guards from [10] obviously holds for more powerful
edge 2-transmitters. The polygon requiring bn4 c edge
guards only necessitates bn8 c edge 2-transmitters, and
next we improve on this lower bound:

Theorem 5 There exist simple n-gons that require
bn/6c edge 2-transmitters.

a

Figure 2: Lower bound construction for general polygons.

Proof. We provide a polygon Pn where any valid cov-
ering by edge 2-transmitters requires at least bn/6c
edges. Fig. 2 depicts a six-edge gadget. The dashed
arrows indicate the beginnings of edges of neighboring
gadgets; one can arrange bn/6c of these gadgets se-
quentially around a circle, subdividing up to 5 edges
if necessary so that Pn has n vertices and n edges.
(Modified angles allow for an arbitarily large number
to be placed around a circle.) Vertex a is only 2-visible
from one of the six edges in the gadget (if all other
gadgets remain entirely below the dashed 2-visibility
lines). Thus, at least one edge from each gadget must
be included in any valid edge 2-transmitter cover. �

4.2 Monotone Polygons

Theorem 6 There exist monotone n-gons that re-
quire d(n− 2)/9e edge 2-transmitters.

Proof. Consider polygon P in Fig. 3. Two points
pi, pj ∈ int(P ) within ε from ai, aj are not 2-visible
from the same edge. So, each ai requires an edge for
coverage. |V (P )| = 9` − 6 and ` edge 2-transmitters
are necessary. For any value of n, the construction
(possibly with up to 8 edges subdivided) necessitates
b(n+ 6)/9c = d(n− 2)/9e edge 2-transmitters. �

Before we can prove the upper bound for monotone
n-gons, we present a crucial lemma.

Lemma 7 Any monotone 10-gon P can be covered
by a single edge 2-transmitter e, and for every point
p ∈ P , there exists q on e such that p is 2-visible from
q, where q is left of at least two vertices of P and right
of at least two vertices of P .

Proof. Label vertices of P left to right: v1, . . . , v10.
Assume no two vertices are on the same vertical line
(otherwise perturb one by some sufficiently small ε).

Draw vertical line l5 though v5. Let e be the edge
it hits on the other monotone chain; its endpoints are
a = vi where i ≤ 4 and b = vj where j ≥ 6. First
consider the vertical line l4 through v4. This separates
from P a 5-gon PL ⊂ P with vertices v1, v2, v3, v4,
and the other intersection of l4 with P ’s boundary. By

a1 a2 a3 a`

...

Figure 3: Lower bound for monotone polygons.
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Figure 4: Examples of a monotone 10-gon P ; edges cov-
ering P are thickened. (a) case 1, (b) case 2, proof of
Lemma 7.

v5

v6v4
v8

v1

v9

v3

v7

v11

v10

v2

(a)

Edge Witness points

v1v7 • • • •
v1v2 • • •
v2v3 • • • •
v3v4 • • • •
v4v5 • • • •
v5v6 • • • •
v6v9 • • • •
v7v8 • • • •
v8v11 • • •
v9v10 • • •
v10v11 • • •

(b)
Figure 5: (a) A monotone 11-gon requiring two edge 2-
transmitters; boundaries of 2-VRs of witness points are
dotted. (b) • denotes the edge sees the gold witness point,
etc. No edge 2-transmitter covers all five witness points.

Lemma 1, PL can be covered by a point 2-transmitter
placed anywhere in PL, and in particular anywhere
along the intersection of l4 with P .

Case 1: If b = vj and j ≥ 7, the vertical line l7
through v7 cuts a 5-gon PR from P , with vertices v7,
v8, v9, v10, and the other intersection of l7 with P ’s
boundary; see Fig. 4(a). By Lemma 1, PR can be
covered by a 2-transmitter placed anywhere in PR.
Then PL is 2-visible from e ∩ l4, PR is 2-visible from
e ∩ l7 and the interior of e covers P \ (PL ∪ PR).

Case 2: Otherwise, b = v6; see Fig. 4(b). Consider
the line segment f connecting v5 and v6. We have
f ⊆ P and it crosses from one monotone chain to
the other. To its right f seperates a 6-gon from P :
PR. By Lemma 3, PR is 2-visible from a point 2-
transmitter placed at c, c = v5 or c = v6. P ’s edge
e′ with right endpoint c (possibly e′ = e) has left
endpoint in the set {v1, v2, v3, v4}. Thus, e′ covers P :
PR is 2-visible from c, PL is 2-visible from e′ ∩ l4, and
the interior of e′ covers P \ (PL ∪ PR). �

The bound of 10 is the best we can hope for: the 11-
gon from Fig. 5 necessitates two edge 2-transmitters.

The next lemma follows immediately from the proof
of the Splitting Lemma in [1], and is crucial to the
subsequent sufficiency result.

Lemma 8 Let P , L, R, L′, R′, and l be as in the
Splitting Lemma. Then for every edge e 6= l of L, the
subset of e left of l is a subset of an edge of P . For
every edge e 6= l of R, the subset of e right of l is a
subset of an edge of P .

Figure 6: Lower bound for monotone orthogonal poly-
gons. The 2-visibility region of the bold edge is shaded.

Theorem 9 d(n − 2)/8e edge 2-transmitters are al-
ways sufficient to cover a monotone n-gon with n ≥ 4.

Proof. We induct on n. For the base case, one
edge 2-transmitter e covers monotone k-gons, k =
3, 4, ..., 10 by Lemma’s 1, 3, and 7. Each p ∈ P is
2-visible from some q ∈ e, with q to the right of at
least two vertices of P .

Suppose n > 10 and for all n′ < n, every monotone
n′-gon P ′ can be covered by a set C of dn′−2

8 e edge
2-transmitters, and each p ∈ P ′ is 2-visbile from some
point q ∈ e ∈ C, with q right of at least two vertices
of P ′. Apply the Splitting Lemma for m = 10 to
obtain a monotone 10-gon L and a monotone (n− 8)-
gon R. Let l, L′, and R′ be as in the lemma. Then
by Lemma 7, 10-gon L can be covered by a single
edge 2-transmitter e such that every point p ∈ L is
2-visible from some point q on e that is left of at least
two vertices of L and right of at least two vertices of
L. Thus, e 6= l, and the portion of e consisting of all
such points q is entirely left of l, so by Lemma 8 is
a subset of an edge of P . Thus, there exists a single
edge 2-transmitter t of P that covers L′. Moreover,
all points in L′ are 2-visible from a point q ∈ t ∈ P ,
where q is right of at least two vertices of P , because
the same statement holds for edge e of L.

By the induction hypothesis, monotone (n−8)-gon

R can be covered by a collection C of d (n−8)−28 e edge
2-transmitters, and every point in R′ is 2-visible from
some point q on an edge of C, where q is right of
at least two vertices of R. Hence, for each edge e ∈
C, the portion t of e consisting of all such points is
entirely right of l, so by Lemma 8, t is a subset of
an edge of P . Thus, there exists a collection C ′ of

d (n−8)−28 e edge 2-transmitters covering R′.
So, P has an edge 2-transmitter cover C of size

1+d (n−8)−28 e = dn−28 e with the assumed property. �

4.3 Monotone Orthogonal Polygons

We note the following without proof; see Fig. 6.

Theorem 10 There exist monotone orthogonal
(MO) n-gons that require dn−210 e edge 2-transmitters.

We now proceed to show the upper bound.

Lemma 11 Any monotone orthogonal 6-gon is cov-
ered by a (point) 2-transmitter placed anywhere.

Lemma 12 Any monotone orthogonal 12-gon P can
be covered by one edge 2-transmitter, not placed on
its leftmost or rightmost edge.
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Figure 7: Examples of a MO 12-gon P ; edges covering P
are thickened. (a) case 1, (b) case 2, proof of Lemma 12.

Proof. Assume no two vertical edges in P have the
same x-coordinate. Order the vertices of P left to
right, order vertices with the same x-value (endpoints
of a vertical edge ev) according to a left to right traver-
sal of the monotone chain containing ev. The two left-
most and rightmost vertices can be put in any order.
Label the vertices as v1, v2,..., v12 in this order, see
Fig. 7. Vertical edges have endpoints v2i−1, v2i for
i = 1, 2, ..., 6. For horizontal edges (except for right-
most and left most vertices), the right (left) vertex
has odd (even) index, due to monotonicity.

Consider the supporting line l through the vertical
edge {v5, v6}. This separates from P a 6-gon with
vertices v1, v2, v3, v4, v5, and l ∩ e, where e is an
edge in the opposite monotone chain from v5. We
have v6 ⊂ l, though it may lie on the boundary of PL,
as in Fig. 7(a), or not, as in Fig. 7(b). The support-
ing line l′ through the vertical edge with {v7, v8} also
separates from P a 6-gon PR with vertices v8, v9, v10,
v11, v12 and l′ ∩ e′, where e′ is an edge in the oppo-
site chain from v8. Based on v6’s location, there are
two cases for the number of edges extending rightward
beyond l whose left endpoint is in PL. Note edge e
always extends rightward past the right boundary of
PL, implying its right endpoint is vi for i ≥ 7.

Case 1: If v6 is on the boundary of PL, a second
edge extends rightward from v6, also with its left end-
point in PL and its right endpoint some vi for i ≥ 7;
see Fig. 7(a). In this case at least one of these two
edges has right endpoint vi for i ≥ 8, so it covers PR,
PL and the rectangular region P \ (PL ∪ PR).

Case 2: Else, v6 is not on the boundary of PL, and
e is the only edge extending rightward from PL; see
Fig. 7(b). Similar to case 1, if e has right endpoint vi
for i ≥ 8 we are done, so, we suppose v7 is e’s right
endpoint. In this case, e might not cover the entirety
of PR. Let f be the segment connecting v5 and v7. We
have f ⊂ P . We note that f separates from P a (non-
orthogonal) 6-gon P ′L with vertices v1, v2, v3, v4, v5, v7,
and PL ⊆ P ′L. P ′L contains at most one reflex vertex
and, thus, can be covered by a point 2-transmitter
placed anywhere on its boundary. In particular, the
edge v7v8 covers P ′L from v7, PR from v8, and P \
(PL ∪ PR) from its interior.

In neither case above do we pick the rightmost or
leftmost edge to cover P . �

Theorem 13 dn−210 e edge 2-transmitters are always
sufficient to cover a monotone orthogonal n-gon.

Proof. We induct on n. For a MO n-gon P , n is
even and P has n/2 vertical and horizontal edges. By
Lemma 12, all MO m-gons with 4 ≤ m ≤ 12 can be
covered by one edge 2-transmitter, not placed on its
leftmost edge.

Label the vertical edges of P in order left to right as
e1, e2, . . . , en/2. Consider the supporting line of edge
e6; this separates from P a MO 12-gon Q with six
vertical edges e1, e2, . . . , e5, and some segment of the
supporting line of e6. Polygon Q can be covered by a
single edge 2-transmitter, not placed on its leftmost or
rightmost edge. The remainder P \Q has n/2−5 ≥ 2
vertical edges e7, e8, . . . , en/2, and some segment of
the supporting line of e6, so, |V (P \ Q)| = n − 10.
By the inductive hypothesis, it can be covered by

d (n−10)−210 e edge 2-transmitters, none of which are
placed on its leftmost edge. Together with the sin-
gle edge covering Q, this yields a cover of P by

1 + d (n−10)−210 e = dn−210 e edge 2-transmitters, not in-
cluding P ’s leftmost edge. �
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Chromatic Guarding of Orthogonal Polygons with Orthogonal Visibility

Frank Hoffmann∗ Klaus Kriegel∗ Subhash Suri† Kevin Verbeek‡ Max Willert∗

Abstract

We address both the strong (introduced in [3]) and
the conflict-free ([1]) chromatic version of the classic
Art Gallery Problem. Assume a simple orthogonal
polygon P is guarded by a finite set of point guards
and each guard is assigned one of t colors. Such a
chromatic guarding is said to be conflict-free if each
point p ∈ P sees at least one guard with a unique
color among all guards visible from p. The guard-
ing is strong if all guards visible from a point have
different colors. The goal is to establish bounds on
the numbers χcf (n) and χst(n) of colors sufficient to
guarantee the existence of a conflict-free, respectively
strong chromatic guarding for any n-vertex polygon.
In this paper, we assume the r-visibility model in-
stead of standard line visibility. Points p and q in an
orthogonal polygon are r-visible to each other if the
axis-parallel rectangle spanned by the points is con-
tained in P . For this model we show tight bounds
on the number of colors: Θ(log log n) for conflict-free
and Θ(log n) for strong guarding. Our results can be
interpreted as coloring results for special geometric
hypergraphs [5].

1 Preliminaries

We study simple orthogonal polygons, i.e., polygons
consisting of alternating vertical and horizontal edges
only. By |P | we denote the number of vertices, by ∂P
the boundary and by intP = P \ ∂P the interior of
the polygon. Vertices can be reflex or convex. A reflex
vertex has an interior angle 3π/2 while convex vertices
have an interior angle of π/2. We do not make any
general position assumption for the simple orthogo-
nal polygons P . Points p, q ∈ P are r-visible to each
other if the closed axis-parallel rectangle r[p, q] with
diagonal pq is contained in P . In the following, visible
always means r-visible. V (p) = {q ∈ P |r[p, q] ⊆ P},
the set of all points visible from p, is the visibility
polygon of p. A polygon that is fully visible from one
of its points is called a star. For P ′ ⊂ P we define its
visibility polygon by V (P ′) = ∪p∈P ′V (p). The win-
dows of a subpolygon P ′ in P are those parts of ∂P ′
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Figure 1: Example of conflict-free (left) and strong
chromatic (right) guarding

that do not belong to ∂P .
For an orthogonal polygon P we construct its induced
visibility arrangementAr(P ): For each reflex vertex of
P we extend both incident boundary edges into intP
until they meet the boundary again, therefore defining
a subdivision of the polygon. The 2-dimensional faces
of this arrangement are rectangles. Clearly, points
from the interior of the same rectangle (subsequently
called cell) have the same visibility polygon.
Finally, we define special classes of orthogonal poly-
gons. A histogram has a boundary base edge e con-
necting two convex vertices such that V (e) = P . A
histogram that is a star is called a pyramid.

Conflict-free and strong chromatic guarding:
A set G of points is a guard set for an orthogonal
polygon P if their visibility polygons jointly cover the
whole polygon. If in addition each guard g ∈ G is
assigned one color γ(g) from a fixed finite set of col-
ors [t] = {1, 2, . . . , t} we have a chromatic guarding
(G, γ). Next we give the central definitions.
A chromatic guard set (G, γ) for P is strong if each
point in P sees only differently colored guards.
(G, γ) is conflict-free if for any point p ∈ P there is
at least one guard in the guard set G(p) = V (p) ∩ G
whose color is unique.
Figure 1 illustrates both concepts. We denote by
χcf (P ) the minimal t such that there is a conflict-free
chromatic guarding set for P using t colors. Maximiz-
ing this value over all polygons with n vertices from
a specified polygon class is denoted by χcf (n).
Consequently, we denote by χst(P ) the minimal t such
that there is strong chromatic guarding set using t col-
ors. Maximizing this value for all polygons with n ver-
tices from a specified polygon class defines the value
χst(n). Observe that minimizing the guard number
is not part of the objective function. However, in our
upper bound proofs we use at most a linear number
of guards what is best possible.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: The partition into histograms and the cor-
responding partition tree.

2 Upper Bounds

We show two upper bounds for simple orthog-
onal polygons of size n: χst(n) ∈ O(log n) and
χcf (n) ∈ O(log log n). These bounds are even real-
ized by guards placed in the interior of visibility cells.
This restriction simplifies the arguments and does not
affect asymptotic bounds. Furthermore we use the
simple fact that a polygon is guarded iff its interior is
guarded. The upper bound proof is inspired by ideas
developed in [1, 2] for conflict-free guarding of simple
polygons based on line visibility. Omitted details can
be found in [4].

2.1 Reduction to histograms

We reuse the central concept of independence in-
troduced in [1, 2] for line visibility. Independence
means that one can use the same color sets for col-
oring guards in independent subpolygons. The fol-
lowing definition suffices for our purposes and covers
both the strong and the conflict-free variant:

Let P be a simple orthogonal polygon and P1 and
P2 subpolygons of P . We call P1 and P2 independent
if no point in P can see simultaneously points from
intP1 and intP2.

Next, we hierarchically subdivide an orthogonal
polygon P into a linear number of histograms by a
standard window partitioning process, see [1].
The subdivision is represented by a partition tree
H = HP (e) with histograms as node set. Let e be
a highest horizontal boundary edge. The visibility
polygon of e is a histogram. This is the root ver-
tex of H. Now Q splits P into parts and defines a
finite set (possibly empty if Q = P ) of vertical win-
dows w1, . . . , wk. Then we recurse, see Figure 2, with
the windows being the new base edges. Each window
corresponds to a last left or right turn of a shortest
orthogonal path from e to the histogram defined by
the window. So we can label the histograms left or
right.

Let Hd, d = 0, 1, 2, be the family of all histograms
corresponding to nodes in H with depth congruent d
mod 3. We partition Hd into HL

d consisting of Q and
all those histograms which are left children and, on
the other side, HR

d consisting of the remaining “right”
parts. In Figure 2 the six families of histograms are

color-coded for illustration. For example, the dark
gray histograms are right children with depth con-
gruent 1 mod 3.

Lemma 1 Let P be a polygon and HL
d , d = 0, 1, 2

the family of histograms corresponding to left nodes
in H with depth congruent d mod 3. Then the in-
terior of histograms in each HL

d have pairwise link
distance at least three, analogously for HR

d , so they
are independent.

2.2 Guarding a histogram

Consider a histogram H ⊆ P with a top hori-
zontal base edge. We associate with H a tree T as
follows. Consider the set of open 2-cells in the visi-
bility arrangement Ar. If several cells have the same
visibility polygon we choose the leftmost cell as repre-
sentative. Let R be the set of all representatives and
B ⊆ R the subset of cells adjacent to bottom hor-
izontal edges. We define a partial order for B: We
say b′ ≤ b iff the horizontal polygon edge of b′ is not
above that of b and there is an r ∈ R that sees both
b and b′. The Hasse diagram of this poset is a tree
T which we call the spine of H. A monotone path π
in T is a directed subpath of a root-to-leaf path. It
corresponds to a pair (b, b′) with b′ ≤ b.

Lemma 2 There is a bijective mapping Φ between
cells of R and monotone paths in T such that two
cells are visible from each other iff the corresponding
monotone paths in T share a node.

Proof. Let r be a cell in R. Then V (r) ∩ T is some
montone path π in T and we set Φ(r) = π. For the
inverse function let π be a monotone path in T from
vertex b down to b′. We associate with π the unique
cell Φ−1(π) = r ∈ R that is vertically aligned with b′

and horizontally with b.
We observe that Φ is well-defined by the choice of the
leftmost representative for visibility equivalent cells
and it is clearly a bijection. Especially, for π = (b, b)
we have Φ−1(π) = b.
For the second assertion consider two cells r, r′ visible
from each other and the smallest rectangle that in-
cludes both. By extending this rectangle downwards
it hits a horizontal boundary edge. The vertex of T
corresponding to that edge is in both Φ(r) and Φ(r′).
For the other direction consider a cell r′′ correspond-
ing to a vertex in Φ(r) ∩ Φ(r′). It has a bottom hor-
izontal edge. We form a rectangle in H above this
edge of maximal width and maximal heigth. All cells
visible from r′′ are in this rectangle, therefore r sees
r′. Figure 3 illustrates the bijection. �

Now we translate the geometric concepts of strong
and conflict-free guardings of H into equivalent com-
binatorial questions for the spine T . First of all, a
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Figure 3: Spine tree and bijection between open cells
and monotone paths

colored guard set for H defines a set of colored cells
in R and this defines using Φ a covering of T with
colored monotone guarding paths and vice versa. The
condition for strong guarding now reads: No mono-
tone path in T can intersect two guarding paths of
the same color.
For conflict-free guardings we have:

Lemma 3 Colored guards g1, . . . , gr define a conflict-
free guarding for H iff for each monotone path π in
T there exists a color and exactly one guarding path
Φ(gi) with that color such that π ∩ Φ(gi) 6= ∅.

Proof. Consider the cell Φ−1(π). It is seen by a
guard g with a unique color c. Therefore Φ(g)∩π 6= ∅.
Assume, some other c-colored guarding path Φ(g′) in-
tersects π. Then g′ sees Φ−1(π), a contradiction. The
other direction is analogous. �

Path compression: We use bottom-up path com-
pression to define a covering (in fact, it is a partition)
of T by monotone paths. To this end we form in paral-
lel for all leaves l the maximal length monotone paths
π(l) that end in l and do not use nodes of outdegree
> 1. We cut off all π(l) from T . Iterating this pro-
cedure yields a unique tree T ∗. Its nodes represent
monotone paths in T . T ∗ has depth O(log |H|) since
in each iteration the number of leaves is reduced by
at least half. Figure 4 shows an example histogram
with its spine tree T . The derived compressed spine
is depicted in Figure 5.

Proposition 4 Let H be a histogram with n ver-
tices. Then there is a strong guarding with O(log n)
colors and a conflict-free guarding with O(log log n)
colors.

Proof. We construct the spine T and the compressed
tree T ∗ with depth O(log n). To get a strong guarding
we color the nodes of T ∗, i.e. the guarding paths in
T , by their depth in T ∗.
For a conflict-free guarding consider the color set [t] =
{1, 2, . . . , t} and the following recursively defined set
of words: s1 = 1 and si = si−1 ◦ i ◦ si−1. Clearly, a
prefix of st with length k has no more than dlog(k+1)e
different colors and each connected subword contains
a unique color, [5]. Now we color the nodes of T ∗ from
the root to the leaves with the sequence st of length

Figure 4: Example histogram with spine tree

Figure 5: Monotone paths covering the spine and the
corresponding compressed spine
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Figure 6: Chromatic guarding positions for the exam-
ple histogram: with colors {1,2,3} strong, with colors
{1,2} conflict-free (in brackets) guarding

at most the height of the tree, that is O(log n). A
color alphabet of size O(log log n) suffices. �

We illustrate the construction in Figure 6. Observe
that we use the same guard positions for both strong
and conflict-free guarding. The compressed spine has
depth 2. For the strong guarding we use colors 1,2 and
3 while for the conflict-free version we use the color
sequence 1-2-1. The guard positions are the open cells
corresponding to the monotone paths via bijection Φ.
Moreover, each guard covers a pyramid as indicated
in the figure.

Theorem 5 Let P be an orthogonal polygon with
|P | = n. We have χst(n) ∈ O(log n) and χcf (n) ∈
O(log log n).

Proof. We decompose P into 6 families HL
d , H

R
d , d =

0, 1, 2, of pairwise independent histograms each of size
at most n. Then we apply Proposition 4. �
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Figure 7: Spike polygons S1, S2 and S3

3 Lower Bounds

All lower bounds established in this paper are based
on a simple, recursively defined family of so called
spike polygons Sm, where S1 is a simple square and
Sm+1 is formed by two copies of Sm separated by a
vertical spike, but joined by an additional horizontal
layer. Figure 7 illustrates this construction together
with the subdivision of S2 into visibility cells and the
corresponding spine tree. Obviously, the spine tree T
of Sm is a balanced binary tree of height m− 1 with
vertices corresponding one-to-one to bottom cells.
Recall, a colored guard set for Sm corresponds to a
covering of T with colored monotone guarding paths
and vice versa.

Theorem 6 For simple orthogonal polygons
χst(n) ∈ Ω(log n).

Proof. We show that any strong guarding of Sm re-
quires m different colors. Consider in spine T a guard-
ing path π covering the root with unique color c. Then
c does not occur in the left or in the right subtree of
the root. By induction we need m − 1 more colors
for the subtree missed by π. Since Sm has n = 2m+1

vertices the claim follows. �

Next we analyse the special case that a root-to-leaf
path π in T is covered by short guarding paths only.
Later we show the existence of such a path.

Lemma 7 Let P = {π1, . . . , πr} be conflict-free
guarding paths for a path π with m nodes such that
|πi| = O(mε) for some 0 < ε < 1 and 1 ≤ i ≤ r. Then
this guarding uses at least Ω(logm) colors.

Proof. Let K = max{|πi|, 1 ≤ i ≤ r}. We subdivide
π into k = m

K ∈ Ω(m1−ε) buckets of size K each. This
way every πi can overlap with at most two buckets.
Since P is induced by a conflict-free guarding, there
is a color c1 such that exactly one πi (responsible for
π) is colored with c1. Hence there is a subpath of
π consisting of at least k−2

2 buckets that does not
intersect any c1-colored path. Applying this argument
recursively we obtain the following recursive relation
for the number of colors needed for k buckets: T (k) ≥
T (k−22 ) + 1. This recursive relation easily solves to
T (k) ∈ Ω(log k) ⊆ Ω(logm1−ε) = Ω(logm). �

Theorem 8 For simple orthogonal polygons
χcf (n) ∈ Ω(log log n).

Proof. We start with a conflict-free guarding of
Sm, n = 2m+1 that uses a minimum number of t
colors. By Theorem 5 we have t ∈ O(log log n) =
O(logm). Consider the corresponding family F of
guarding paths in T . We denote by U(v0) the set of
all guarding paths from F covering the root v0 of T
with a unique color. Since |U(v0)| ≤ t there must be
a vertex v1 at depth blog tc + 1 that is not part of
any path from U(v0). Now we iterate starting from
v1. We take all guarding paths covering v1 with a
unique color and we determine a node v2 at depth
2blog tc+ 2 missed by these paths, and so on. We call
the vi’s checkpoints. The checkpoints define a root-
to-leaf path π with length m = log n − 1. Consider
Fπ = {π ∩ πi|πi ∈ F} . Now form a new family Uπ
that consists of all maximal subpaths σ of members
πi ∩ π ∈ Fπ such that σ does not intersect any other
member of the same color in Fπ. Let π′ ⊂ π and as-
sume πi ∈ F gives a unique color to π′. Then π′ ∩ πi
is part of some path in Uπ. Thus Uπ is a conflict-free
guarding path family for π. By construction, paths in
Uπ have length at most 2blog tc+1. Now we can apply
Lemma 7. Since 2 log t+ 1 ∈ O(log logm) ⊆ O(m0.5)
we get t ∈ Ω(logm) = Ω(log log n). �

Applying another, more involved combinatorial
tableaux technique, we can prove a first nontriv-

ial lower bound of Ω
(

log logn
log log logn

)
for conflict-free

guarding of orthogonal polygons with line visibility.
These tableaux comprise necessary conditions a color-
multiset family must have to define a conflict-free
guarding of appropriately vertically stretched spike
polygons Sm, see [4] for details.
However, the best known upper bound for this prob-
lem setting is O(log n), as shown in [1]. This upper
bound holds also for general simple polygons [2]. Clos-
ing these gaps is a challenging open problem.

References
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Special Guards in Chromatic Art Gallery

Hamid Hoorfar∗ Ali Mohades†

Abstract

We present two new versions of the chromatic art
gallery problem that can improve upper bound of
the required colors pretty well. In our version, we
employ restricted angle guards so that these modern
guards can visit α-degree of their surroundings. If α
is between 0 and 180 degree, we demonstrate that the
strong chromatic guarding number is constant. Then
we use orthogonal 90-degree guards for guarding the
polygons. We prove that the strong chromatic guard-
ing number with orthogonal guards is the logarithmic
order. First, we show that for the special cases of the
orthogonal polygon such as snake polygon, staircase
polygon and mounts polygon, the number of colors is
constant. We decompose the polygon into parts so
that the number of the conflicted parts is logarith-
mic and every part is snake. Next, we explain the
chromatic art gallery for the orthogonal polygon with
guards that have rectangular visibility. We prove that
the strong chromatic guarding number for orthogonal
polygon with rectangular guards is logarithmic order,
too. We use a partitioning for orthogonal polygon
such that every part is a mount, then we show that
a tight bound for strong chromatic number with rect-
angular guards is θ(log n)

1 Introduction

New approach of the art gallery problem was raised
with Erickson and LaValle [2], which maximized the
compatible guards so that for two guards whom their
intersection of visibility polygons is not empty must
be spent a new color as cost. In the other words, the
chromatic art gallery find the minimum number of col-
ors that always sufficient and sometimes necessary for
guarding the entire polygon. It is called the chromatic
guarding number. Let χG(P ) denotes the chromatic
guarding number of polygon P. We extend this no-
tation so that χαG(P ) denotes the chromatic guarding
number with α-degree guards, and χrecG (P ) denote the
chromatic guarding number with rectangular guards,
properly. The motivation of offering this problem was
in robot controlling with wireless navigators whom we
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Faculty of Mathematics and Computer Science, Amirkabir Uni-
versity of Technology, Iran.
†Laboratory of Algorithm and Computational Geometry,

Faculty of Mathematics and Computer Science, Amirkabir Uni-
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can set the angle of their ranges. In many cases, these
navigators have the 90-degree range, and they are or-
thogonal corresponding to the environment, because
of it, we introduce the chromatic art gallery with or-
thogonal 90-degree guards in the orthogonal polygons.
Erickson and LaValle showed that for a spiral poly-
gon, the chromatic guarding number is at most 2 and
for a staircase polygon is at most 3, then they showed
that for every positive number k, there exists a poly-
gon with 4k vertices such thatχG(Pk) ≥ k. Also, they
showed that for every odd numberk there is an or-
thogonal polygon with 4k2 + 10k + 10 vertices such
that χG(Pk) ≥ k [2]. We extend these result with
α-degree guards so that χαG(P ) ≤ 2 and for orthogo-
nal guards χOG(P ) ∈ O(log n) wherever χOG(P ) denotes
the chromatic guarding number with the orthogonal
90-degree guards. After that, we extend these result
with rectangular guards so that χrecG (P ) ∈ θ(log n)

2 Basic Definitions

Let polygon P be a connected simple subset of R2

with ∂P as its boundary. p ∈ P is visible from q ∈ P
if the segment pq is a subset of P . For every point p
in the polygon, V (p) indicates visibility polygon of p
so that V (p) = {q ∈ P s.t. p is visible from q}. The
guard set S is a finite set of points in the polygon
such that

⋃
s∈S V (s) = P , every element of S is called

guard [1]. A pair of guards s and t is named incom-
patible whenever V (s) ∩ V (t) 6= ∅. Let C(s) denotes
the minimum colors necessary for coloring the guard
set S so that every pair of incompatible guards have
different colors. Furthermore, let T (p) denote the set
of all guard sets in P , and χG(P ) = mins∈T (p)C(s)
is called the chromatic guarding number. The chro-
matic art gallery problem minimizes the chromatic
guarding number rather the guarding number [3].
Let α-guard denotes the guard whom its visual field
is (v, v + α) wherever v is an arbitrary angle and
α ∈ (0, 180], for instance, 90-guard is a guard with
visual field equal to (v, v + 90). In addition, let
O-guard denotes the orthogonal 90-guard. Suppose
χαG(p) denotes the chromatic guarding number with
the α-guards, and we extend the notations so that
χOG(p) indicates the chromatic guarding number with
the O-guards as well. Also:
V α(g) = {p ∈ P | q is visible from α− guard g}
V O(g) = {q ∈ P | q is visible from O − guard g}
In the orthogonal polygon, a horizontal (vertical)

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
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48



31st European Workshop on Computational Geometry, 2015

Figure 1: An orthogonal polygon that has no v-cut
edge.

edge eh (ev) that its two end points are reflex
vertices is called h-cut edge (v-cut edge) [4]. For
any two points p and q in a rectilinear polygon P,
if the aligned rectangle with p and q as opposite
corners lies totally inside P, then p and q are called
rectangularly visible [4]. Also for any point p in
polygon P, V rec(p) denotes the rectangular visibility
area of P, such that:
V rec(p) = {q ∈ P |p is rectangularly visible from q}
Every guard can see around it rectangularly is
represented by the r-guard. Assume guard set S
that is a finite set of r-guards in the polygon so that⋃
s∈S V

rec(s) = P then we call that P is r-visible from
S. we extend the use of the notations to r-guards as
χrecG (P ) = minS∈T (p) C(S) whenever S is an r-guard
set. And assume these notations:
V ⊥(p) = {q ∈ P |q is orthogonally visible from point p}
V ⊥(e) = {q ∈ P |q is orthogonally visible from segment e}

Observation 1 Every orthogonal polygon that has
no h-cut edge (v-cut edge) is y-monotone (x-
monotone) polygon. As the Figure 1 shows.

In the following we define a new special polygon,
we call it, the snake polygon.

Definition 1 A polygon P is called snake polygon if:
1. P is an orthogonal x-monotone (y-monotone).
2. The line segment created by extending an h-cut
edge to the boundaries of ∂P can decompose P into
exactly three subpolygons.
3. Each of its sub polygon must be xy-monotone. see
Figure 2.

As the sample, every staircase polygon is a snake
polygon; similarly, every xy-monotone polygon is a
snake polygon as well. We define two special poly-
gons, mounts polygon and mount polygon as follow-
ing.

Figure 2: A snake polygon

Figure 3: 180-degrees guard

Definition 2 Polygon P is called mounts polygon if
it has at least an edge e ∈ P such that V ⊥(e) = P ,
nominate e, base edge.

Definition 3 The mounts polygon P is named
mount polygon if P is monotone corresponding to a
line perpendicular to its base edge.

3 A tight bound on the chromatic guarding num-
ber of the general polygon with α-guards

Consider a simple polygon P . Select an arbitrary
edge e1 then place a 180-guard g1 on it. Process
V 180(g1) [5], every connected part of its boundary,
which is not belonged ∂P is called window. Continu-
ally place 180-guards on the created windows of previ-
ous step until the entire polygon is covered, see Figure
3

We demonstrated that in the general polygon with
180-degree guards the chromatic guarding number is
1, i.e.χ180

G (p) = 1. Now, we can replace every 180-
guard with at most two colors of α-guards. We want
b 180α c guards in the same color and perhaps one guard
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Figure 4: Replace a 180-degrees guard with α-guards

Figure 5: O-guarding a snake polygon

in the different color. Wherever 180
α is not an integer

such that it is shown in Figure 4. Hence, if 0 < α ≤
180, then χαG(p) ≤ 2.

4 Some special polygons with O-guards

Suppose that P is a snake polygon, we present a par-
titioning so that its chromatic guarding number will
be constant. Extend all h-cut edges in the snake poly-
gon, because of this, the polygon decomposes to sub
polygons such that all of them are staircase or mount
polygons. We can guard all these staircase parts with
one color of the O-guard independently, see Figure 5.
The green parts are the mount polygons, and the blue
ones are staircase polygons.

Observation 2 For every staircase polygon P when
the bottom edge is not seen, χOG(P ) = 1.

Observation 3 For every mount polygon P when
the bottom edge is not seen, χOG(P ) = 1, see Figure
6.

Figure 6: The staircase polygon and mount polygon
can be guarding with one color of O-guards

If the bottom edge is not seen, then the visibility
polygon of the O-guards in two different parts will
not be incompatible. We place the green O-guards
in the green areas and the blue ones in the blue ar-
eas. Therefore, we can cover the entire snake polygon
with at most two colors. So the chromatic guarding
number of the snake polygon is less than or equal 2.

Observation 4 The chromatic guarding number of
the snake polygon with O-guards is at most 2.

5 A tight upper bound on the chromatic guard-
ing number of the orthogonal polygon with O-
guards

In this section, we present a partitioning for the or-
thogonal polygon such that every part is a snake poly-
gon. We construct two partitions in two orientations
both horizontally and vertically. Call horizontal (ver-
tical) partitioning h-cutting (v-cutting), then we nom-
inate duality graph of h-cutting (v-cutting), h-tree
(v-tree). Extend all h-cut (v-cut) edges in the poly-
gon until intersect the boundary, start from the lowest
(leftmost) part, the duality node corresponding to it
must be root, then draw a directed edge from the root
to all its neighbors, continue it recursively until the
h-tree (v-tree) is built. See Figure 7.

We modify any paths in the h-tree, so that duality
of them will be snake polygons. For this purpose, we
cut the v-cut edges occur in the path. We know that
these removed parts will cover with guarding in the
other orientation partitioning, certainly. See Figure 8.

Similarly, consider this process for v-tree. If we
find the chromatic guarding number to cover the
h-tree, double of this number will be the chromatic
guarding number for the entire orthogonal polygon.
We know that every modified path in the duality
tree has the chromatic guarding number at most 2
with the condition that the bottom edge is not seen.
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Figure 7: Every path in the duality graph decomposes
to a snake polygon.

Figure 8: Partitioning of an orthogonal polygon.

Follow this algorithm:
1. Find the path from the root to the leaf in every
remained tree so that with removing it, the tree
decomposes into at least two sub trees which their
size are at most half of the total tree.
2. Guard all paths from previous step with two new
colors.
3. Remove the path from the total tree and remain
the sub tree(s).
4. If all remained sub trees are not empty, then go to
step 1.

Lemma 1 The number of iterations of the algorithm
is O(log n).

Proof. In iteration the size of the problem will be at
most half of the previous step then we can write:
f(n) ≤ f(n2 ) + 2 ⇒ f(n) ∈ O(log n), which f(n)
means the complexity of problem. �

Theorem 2 The chromatic guarding number of the
orthogonal polygon with O-guards is the logarithmic
order.

Proof. Using Lemma 1, we know that for guarding
the h-cutting, we need O(log n) colors of guards, by
this guarding, some parts of the polygon is not cov-
ered, because of the modified paths, that cut in the
cross orientation. Nevertheless, we are guarding these
remained parts during guarding v-cutting, completely.
For it, we pay O(log n) colors of guards as cost. As
a result, the chromatic guarding number for the or-
thogonal polygon belongs to O(log n). �

6 An upper bound on the chromatic guarding
number of the general polygon with O-guards

We present an algorithm for the general polygon such
that we remove an orthogonal polygon from it. By
it, all remained parts are spiral polygons or triangles
so that we can guard them with at most two colors
compatibly. Follow this algorithm:
1. Draw a horizontal line from every vertex in the
polygon.
2. Draw a vertical line from every intersection of
lines and polygon.
3. Select rectangles that occurs in the polygon
completely and make an orthogonal polygon.
4. Consider remained parts, we can guard all disjoint
polygon compatibly.

Observation 5 Each remained part is the spiral
polygon so that reflex chain of it, is orthogonal. (Tri-
angle is a special type of the spiral polygon).

Observation 6 The chromatic guarding number for
the spiral polygon with O-guards in which the reflex
chain is not seen is at most 2.

The condition that the reflex chain doesnt must be
seen appears because, the spiral parts can be guarded
independently.

Lemma 3 The chromatic guarding number for the
general polygon with O-guards is O(log n).

Proof. Decompose a general polygon into orthogonal
polygons that its vertices can be O(n2), nevertheless
the χOG(P ) ∈ O(log n) , for remained spiral polygon
χOG(P ) ≤ 2, therefore, for the general polygon P, we
have: χOG(P ) ∈ O(log n)

�

7 A tight bound on the rectangular chromatic
guarding number of the orthogonal polygon

Observation 7 The rectangular chromatic guarding
number of the mounts polygon belongs to θ(log n).

51



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Figure 9: Partitioning the orthogonal polygon to the
mounts polygons.

We found that the rectangular chromatic guarding
number of mounts polygon is the logarithmic order.
Now, we want to extend this result for all orthogo-
nal polygons as well. First, we divide the polygon
into the mounts polygons. Then, the lowest edge of
the polygon, nominate e and process V ⊥(e). Suppose
the boundary of V ⊥(e), every connected part of the
boundary which is not part of the boundary of the
total polygon is called window.

Observation 8 The connected window in V ⊥(e) is
line segment.

Now, find V ⊥(e) for every obtained window since
the entire polygon is supported. See Figure 9.

We demonstrate that if we can cover the mounts
polygon with log n colors, then we can cover all parts
of the partitioning with 5 log n colors, in other words:
χrecG (Porthogonal) ∈ θ(log n).
If a mounts polygon part has the window in its bound-
ary, then it has incompatibility with other parts. The
incompatibility area is a rectangle such that its width
is equal to width of the window. Start from first part,
color it with the first color and color all parts that im-
mediately left of it (call Left-Parts) with the second
color and all parts that immediately right of it (call
Right-Parts) with the third color. So, color all parts
top of Left-Parts and Right-Parts with 4th color and
all parts bottom of Left-Parts and Right-Parts with
5th color. Any parts in the same color want the same
log n colors of r-guards. By this strategy, we can color
the remained parts with the same five colors so that
showed in Figure 9.

Observation 9 The same colored parts are compat-
ible.

Theorem 4 The rectangular chromatic guarding
number that always sufficient and sometimes neces-
sary for covering an orthogonal polygon is O(log n).

Proof. We found that there is an orthogonal polygon
which is needed θ(log n) as its rectangular chromatic
guarding number, and using above method are shown
that θ(log n) is sufficient for all orthogonal polygons,
so the proof is completed. �

8 Conclusion

In this paper, we explained the chromatic art gallery
on the simple polygon with 90-guards that its vis-
ibility field of them is one of the (0, 90), (90, 180),
(180, 270) or (270, 360). This type of guards named
O-guard. In many cases in real-world, the guards can
see a limited angle of its around. This motivated that
we define the new version of the chromatic art gallery
problem so that increase the conflict-free guards from
lower bound n

4 to upper bound O(log n). Then, we
explained the chromatic art gallery for the orthogo-
nal polygon with a special type of guards are called
r-guards. This type of guards has r-visibility such that
any two points p and q in a rectilinear polygon P are
called r-visible, if the aligned rectangle with p and q
as opposite corners lies totally inside P .
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Column Planarity and Partial Simultaneous Geometric Embedding
for Outerplanar Graphs∗
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Abstract

Given a graph G = (V,E), a set R ⊆ V is column pla-
nar in G if we can assign x-coordinates to the vertices
in R such that every assignment of y-coordinates to R
gives a partial embedding of G that can be completed
to a plane straight-line embedding of the whole graph.
This notion is strongly related to unlabeled level pla-
narity. We prove that every outerplanar graph on
n vertices contains a column planar set of size at
least n/2.

We use this result to show that every pair of outer-
planar graphs G1 and G2 on the same set V of n ver-
tices admit an (n/4)-partial simultaneous geometric
embedding (PSGE): a plane straight-line embedding
of G1 and a plane straight-line embedding of G2 such
that n/4 vertices are mapped to the same point in the
two drawings. This is a relaxation of the well-studied
notion of simultaneous geometric embedding, which is
equivalent to n-PSGE.

1 Introduction

The notion of column planarity was originally intro-
duced by Evans et al. [6]. Informally, given a graph
G = (V,E), a set R ⊆ V is column planar in G
if we can assign x-coordinates to the vertices in R
such that any assignment of y-coordinates to R gives
a partial embedding of G that can be completed to
a plane straight-line embedding of the whole graph.
More formally, R is column planar in G if there exists
an injection ρ : R → R such that for all ρ-compatible
injections γ : R → R, there exists a plane straight-
line embedding of G where each v ∈ R is embedded
at (ρ(v), γ(v)). Injection γ is ρ-compatible if the com-
bination of ρ and γ does not embed three vertices on
a line. See Figure 1.

Column planarity is both a generalization and a
strengthening of unlabeled level planarity (ULP). A
graph G = (V,E) is ULP if for all injections γ : V →
∗M. Hoffmann and V. Kusters are partially supported by the
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Figure 1: A graph with column planar set R =
{a, b, d, e} and ρ = {a 7→ 2, b 7→ 4, d 7→ 1, e 7→ 3}.
(b-c) depict completed embeddings for two different
assignments γ : R→ R.

R, there exists an injection ρ : V → R, so that em-
bedding each v ∈ V at (ρ(v), γ(v)) results in a plane
straight-line embedding of G. If V is column pla-
nar in G, then G is ULP. Estrella-Balderrama, Fowler
and Kobourov [5] introduced ULP graphs and char-
acterized ULP trees in terms of forbidden subgraphs.
Fowler and Kobourov [7] extended this characteriza-
tion to general ULP graphs. ULP graphs are exactly
the graphs that admit a simultaneous geometric em-
bedding with a monotone path: this was the original
motivation for studying them.

Following the characterization of ULP graphs, Di
Giacomo et al. [4] introduce a family of graphs called
fat caterpillars and prove that they are exactly the
graphs G = (V,E) where V is column planar in G
(they call such graphs EAP graphs). Evans et al. [6]
prove near-tight bounds for column planar subsets of
trees: any tree on n vertices contains a column pla-
nar set of size at least 14n/17 and for any ε > 0
and any sufficiently large n, there exists an n-vertex
tree in which every column planar subset has size at
most (5/6 + ε)n. Furthermore, they show that outer-
paths (outerplanar graphs whose weak dual is a path)
always contain a column planar subset of size at least
n/2. In this paper, we prove that this bound holds
for general outerplanar graphs.

Evans et al. [6] apply their results on column pla-
narity to give bounds for k-partial simultaneous ge-
ometric embedding (k-PSGE). This problem is a re-
laxation of simultaneous geometric embedding (SGE),
which was introduced by Brass et al. [3]. Given graphs
G1 = (V,E1) and G2 = (V,E2) on the same set of
n vertices, an SGE of G1 and G2 is a pair of plane
straight-line embeddings ϕ1 : V → R2 of G1 and

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: (a-b) Graphs G1 and G2 on the same vertex
set. (c) An SGE of G1 and G2. (d) A 3-PSGE of G1

and G2.

ϕ2 : V → R2 of G2 such that ϕ1 = ϕ2. See Fig-
ure 2c. Conversely, in a k-PSGE of G1 and G2, we
require ϕ1(v) = ϕ2(v) only for some k vertices in V .
More formally, a k-PSGE of G1 and G2 is a pair of
injections ϕ1 : V → R2 and ϕ2 : V → R2 such that
(i) the straight-line drawings ϕ1(G1) and ϕ2(G2) are
both plane; (ii) if ϕ1(v1) = ϕ2(v2) then v1 = v2; and
(iii) ϕ1(v) = ϕ2(v) for at least k vertices v ∈ V [6].
See Figure 2d. An n-PSGE is simply an SGE.

Brass et al. [3] show that two paths, cycles, or cater-
pillars always admit an SGE. On the negative side,
they prove that two outerplanar graphs or three paths
sometimes do not admit an SGE. Bläsius et al. [2] give
an excellent survey of the subsequent papers on simul-
taneous embeddings. We highlight the negative result
by Geyer et al. [8] that there exist two trees that do
not admit an SGE and the result by Angelini et al. [1]
that there exist a tree and a path that do not admit an
SGE. These negative results motivated the study of
PSGE. Evans et al. [6] show that if a set R is column
planar in both G1 and G2, then G1 and G2 admit a
|R|-PSGE. Di Giacomo et al. [4] independently prove
this for R = V . Combining their lower bounds on
the size of column planar sets with a pigeonhole ar-
gument, Evans et al. show that every two trees admit
a (11/17)-PSGE.

A result from Goaoc et al. [9] on the untangling of
outerplanar graphs, implies that any two outerplanar
graphs G1 and G2 on n vertices admit a

√
n/2-PSGE.

In this paper, we prove that every outerplanar
graph contains a column planar set of size at least n/2.
We then use this result to show that every two outer-
planar graphs on n vertices admit an (n/4)-PSGE.

1.1 Outline

We first give an outline of our approach. Consider
an outerplanar graph G on n vertices. We first define
the chord graph of G, which contains only the “long”
chords of the graph. We show that the chord graph
has an independent set I of size at least n+2

2 . We
show that I is almost column planar in G: it suffices
to remove at most one vertex. This gives a column
planar set of size at least n/2 in G.

For our second result, consider two outerplanar
graphs G1 and G2 on the same set of n vertices. It

suffices to compute a set R with |R| ≥ n/4 that is col-
umn planar in both G1 and G2. The result of Evans et
al. [6] implies then that G1 and G2 admit a |R|-PSGE.
We first compute a column planar set R1 in G1. Next,
we compute a column planar set R in G2[R1] with
|R| ≥ n/4. Since R ⊆ R1, the set R is column planar
in both G1 and G2, and hence the statement follows.

2 Column Planarity in Outerplanar Graphs

In this section we show that every outerplanar graph
has a column planar subset containing at least half of
its vertices. Let G = (V,E) be an outerplanar graph
with n vertices. Assume without loss of generality
that G is maximal outerplanar.

Let v0, v1, . . . , vn−1 be the sequence of vertices of
V along the unique Hamiltonian cycle of G. Con-
sider the following removal procedure: Choose an ar-
bitrary vertex of G of degree two different from v0
and vn−1, remove it from the graph and repeat re-
cursively. Since every maximal outerplanar graph has
two nonadjacent vertices of degree 2, and since remov-
ing such a vertex maintains maximal outerplanarity,
such a vertex always exists. The removal order of the
the vertices V \ {v0, vn−1} is the order in which they
are removed by this procedure. For 0 ≤ i < n, let

V (vi) = {vj ∈ V : vj was removed before vi}.
Let N+(vi) be the closed neighborhood of vi. For

0 < i < n − 1, the left index `i of vi is the smallest
index such that v`i ∈ N+(vi). Similarly, the right
index ri of vi is the largest index with vri ∈ N+(vi).
Naturally, v`i ≤ vi ≤ vri .

Lemma 1 Let vi be a vertex with 0 < i < n − 1
and suppose that there is a vertex vj with i 6= j and
`i < j < ri. Then all neighbors of vj are in V (vi).

Proof. Let ` = `i and r = ri and assume without
loss of generality that i < j. Since i < r− 1, the edge
vivr is a chord of G. See Figure 3. Hence, the removal
of vi and vr splits G into two connected components
H1 and H2 such that vj ∈ H1 and v0 ∈ H2. Note that
vj neighbors no vertex in H2. We claim that all the
vertices in V \ V (vi) lie in H2. If this claim is true,
then vj neighbors no point in V \V (vi), which proves
the statement.

Assume for a contradiction that there is a vertex
v ∈ V \ V (vi) that belongs to H1. Therefore, v lies
after vi in the removal order. Since (i) there is no edge
between a vertex of H1 and a vertex of H2, (ii) H1

contains a vertex after removing vi (namely v), and
(iii) H2 contains a vertex after removing vi (namely
v0), the graph G[V \V (vi)] induced by V \V (vi) is dis-
connected. However, the removal procedure described
above only removes ears of the graph and cannot dis-
connect it—a contradiction that comes from assuming
that v belongs to H1. �
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Figure 3: Division into connected components in the
proof of Lemma 1.

Let EC ⊂ E be the set of all chords ofG having end-
points whose removal splits G into components with
at least 2 vertices. That is, the chords adjacent to ears
ofG are not part of EC ; see Figure 4. Let C = (V,EC)
be the chord graph of G.

Figure 4: An outerplanar graph G = (V,E). The edge
set EC is drawn solid; the other edges are dotted.

Lemma 2 Let I ⊂ V be an independent set of C
such that there is an edge of the Hamiltonian cycle
of G whose endpoints are both not in I. Then I is
column planar in G.

Proof. Let v0, v1, . . . , vn−1 be the sequence of ver-
tices of V along the unique Hamiltonian cycle of G
such that v0 and vn−1 are not in I. To set the x-
coordinate of the vertices in I, we define the injection
ρ : I → R such that ρ(vi) = i.

For any ρ-compatible injection γ : I → R, we
need to show that there exists a plane straight-line
embedding of G where each vi ∈ I is embedded at
ϕ(vi) = (ρ(vi), γ(vi)).

We first show that ϕ is a plane straight-line em-
bedding of the graph G[I]. Since I is an independent
set of C, we know that if two vertices vi, vj ∈ I are
adjacent in G such that i < j, then either j = i + 1
or j = i + 2. Otherwise, the removal of vi and vj
splits G into two graphs, each with at least two ver-
tices, which implies that the edge vivj belongs to C: a
contradiction. Furthermore, if {vi, vi+2} ∈ E then the
neighbours of vi+1 are exactly vi and vi+2. Therefore,
ϕ is a plane straight-line embedding of G[I].

We now describe an algorithm that places the re-
maining vertices of V to obtain a plane straight-line
embedding of G. The algorithm is incremental and
adds one vertex at the time in the order given by the
removal order.

Let Xi be the set of vertices that have already been
placed, starting with, X0 = I. We never embed two
vertices at the same x-coordinate. We say that the
visibility invariant holds if each vertex of Xi that

neighbors a vertex of V \Xi in G is visible from below,
i.e., the ray shooting downwards from this vertex in-
tersects no edge of the embedding of G[Xi]. We can
see that the visibility invariant holds for X0 as fol-
lows. Suppose that there is a vertex vk that is not
visible from below. Then the ray from vk downward
intersects some edge {vi, vj}. Since vi and vj are in-
dependent in C and since i < k < j, we must have
k = i+ 1 and j = i+ 2. But then the only neighbors
of vk are vi and vj , and hence vk does not neighbor a
vertex of V \X0, as required.

For any i ≥ 0, let vj be the first vertex in V \ Xi

according to the removal order and let Xi+1 = Xi ∪
{vj}. Let ` = `j and r = rj be the left and right
indices of vj , respectively.

We place vj at coordinates (j, yj), where yj is a
sufficiently small number such that all neighbors of
vj in Xi are visible from vj . This number always ex-
ist by the visibility invariant and since we never em-
bed two vertices with the same x-coordinate. Because
` ≤ j ≤ r by Lemma 1, only vertices strictly between
v` and vr in the x-order can become not visible from
below. However, since V (vi) ⊂ Xi+1, Lemma 1 im-
plies that for every ` < k < r, all neighbors of vk are in
Xi+1. Therefore, the visibility invariant is preserved
for Xi+1.

After this process completes, the only remaining
vertices to embed are v0 and vn−1. Embed v0 at x = 0
and vn−1 at x = n − 1. Move both down sufficiently
far so that the edge {v0, vn−1} does not intersect the
drawing so far and so that v0 and vn−1 can both see
their neighbors from below. This completes the plane
straight-line embedding of G. �

Lemma 3 The graph C has an independent set of
size at least n+2

2 .

Proof. Let G be the weak dual graph of the complete
outerplanar graph G. Let xi be the number of vertices
of degree i in G. Notice that G is a binary tree whose
leaves correspond to ears of G. Since the the degree
two vertex of an ear in G becomes an isolated vertex
in C, we know that C has at least x1 isolated vertices.
Since G is a binary tree, we know that x1 = x3 + 2.

We describe a greedy procedure to construct an in-
dependent set I of C. The algorithm chooses the ver-
tex of smallest degree in the current graph (initially
C), adds it to I, and removes its neighbors from the
graph. Clearly this procedure generates an indepen-
dent set. We claim that that |I| ≥ n+2

2 .
Because C is outerplanar, it is 2-degenerate. There-

fore, whenever we add a vertex to I, it has degree 0,
1, or 2. Let ni be the number of vertices in I that
had degree i at the moment they were chosen. Thus,
|I| = n0 + n1 + n2. Moreover, we know that n0 ≥ x1
as isolated vertices of C will be added to I before any
other vertex of C. Thus, n0 ≥ x1 = x3 + 2.
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Let m be the number of bounded faces of C. Since
m ≤ x3, we conclude that m+ 2 ≤ n0.

Since removing vertices of degree zero or one does
not change the number of bounded faces, we remove
a bounded face of the current graph exactly when we
add a vertex of degree 2 to I. Thus, m = n2. There-
fore, n2 ≤ n0 − 2.

Since every time our algorithm chooses a vertex of
degree i we remove its i neighbors from the graph,
and since only vertices of degree 0, 1 or 2 are chosen,
we conclude that n = n0 + 2n1 + 3n2. Because |I| =
n0 + n1 + n2, we infer that

n = n0 + 2n1 + 3n2 ≤ 2(n0 + n1 + n2)− 2 = 2|I| − 2.

Consequently |I| ≥ n+2
2 . �

If the independent set I guaranteed by Lemma 3
does not satisfy the condition of Lemma 2, for in-
stance when n is even and I is the set of vertices with
an even index, then take any vi ∈ V \ I and remove
vi+1 from I. Since the modified I satisfies Lemma 2,
we have

Theorem 4 Every outerplanar graph on n vertices
contains a column planar set of size at least n/2.

3 Application to Partial Simultaneous Geometric
Embedding

Let G1 = (V,E1) and G2 = (V,E2), both on the same
set V of n vertices. Let R1 ⊆ V be column planar in
G1 and let R2 ⊆ V be column planar in G2. Evans et
al. [6] proved that then G1 and G2 admit an |R|-PSGE
where R = R1 ∩R2.

For outerplanar graphsG1 andG2, let C1 and C2 be
their chord graphs, respectively. First use Lemma 3
compute an independent set I1 of size at least n/2+1
in C1. Remove at most one vertex from I1 to obtain
a set R1 of size at least n/2 that is column planar
in G1 by Lemma 2. Next, use Lemma 3 to com-
pute an independent set I2 of size at least n/4 + 1
in the chord graph of G2[R1] (after adding edges to
make G2[R1] maximal outerplanar). Note that I2 is
also independent in C2, and hence we can remove at
most one vertex from I2 to obtain a set R ⊆ R1 ⊆ V
of size at least n/4 that is column planar in G2 us-
ing Lemma 2. Note that R is also column planar in
G1 since R ⊆ R1. Combining this with the afore-
mentioned result of Evans et al. [6] gives our second
result.

Theorem 5 Every two outerplanar graphs on a set
of n vertices admit an (n/4)-PSGE.
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All Good Drawings of Small Complete Graphs∗
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Abstract

Good drawings (also known as simple topological
graphs) are drawings of graphs such that any two
edges intersect at most once. Such drawings have
attracted attention as generalizations of geometric
graphs, in connection with the crossing number, and
as data structures in their own right. We are in par-
ticular interested in good drawings of the complete
graph. In this extended abstract, we describe our
techniques for generating all different weak isomor-
phism classes of good drawings of the complete graph
for up to nine vertices. In addition, all isomorphism
classes were enumerated. As an application of the
obtained data, we present several existential and ex-
tremal properties of these drawings.

1 Introduction

We consider drawings of simple graphs in the plane or,
equivalently, on the sphere. Vertices are represented
by distinct points. Edges are drawn as Jordan arcs
connecting two vertices (of that edge) and not con-
taining any vertex except those at their endpoints.
Note that we do not distinguish between the elements
of the graph and their representation in the drawing.
A good drawing is a drawing of a graph such that any
two edges intersect at most once, either at a com-
mon endpoint or at a proper crossing, and no three
edges cross at a common point. Good drawings have
been extensively studied, and are also referred to as
“topological graphs” (e.g., in [14]), “simple topologi-
cal graphs” (e.g., in [9]), or simply “drawings” (e.g.,
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in [8]). We are interested in good drawings of the
complete graph Kn on n vertices.

One main motivation for considering good drawings
comes from the problem of minimizing the number
of crossings in drawings of Kn (where crossings are
counted by the overall sum of the number of points
in which each pair of edges crosses, as opposed to the
number of crossing edge pairs; see [15]). Indeed, for
any drawing of a graph, there exists a good draw-
ing of the same graph with at most the same num-
ber of crossings. The Harary-Hill conjecture states
that the number of crossings in any drawing of Kn is
at least H(n) = 1

4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
. This has

been verified for n ≤ 12; see [18]. While it has recently
been shown that the Harary-Hill conjecture holds for
many classes of drawings of Kn (see [1] and references
therein), it still remains open for the general case.

Two drawings are isomorphic if there is a homeo-
morphism of the sphere that transforms one drawing
into the other. For good drawings, this partitions the
infinite number of drawings into a finite number of iso-
morphism classes; Kynčl [9] showed that this number

is in 2Θ(n4). With applications like determining the
crossing number in mind, the following coarser classi-
fication turns out to be useful. Two good drawings are
weakly isomorphic if there is an incidence-preserving
bijection between the drawings such that two edges
cross in one drawing if and only if their images in
the other drawing cross as well. Roughly speaking,
weakly isomorphic drawings that are non-isomorphic
differ in the order in which their edges intersect; see [4]
for details. The number of weak isomorphism classes

of Kn is in 2n
2α(n)O(1)

[11] and 2Ω(n2) [16].

Already in 1988, Rafla [20] enumerated all weak iso-
morphism classes of good drawings of Kn for n ≤ 7
by a computer program, under the (still unproven)
assumption that every good drawing contains a sim-
ple (i.e., crossing-free) Hamiltonian cycle. Gronau
and Harborth [5] enumerated all non-isomorphic good
drawings for n=6. Here, we describe our construction
of all weak isomorphism classes and the enumeration
of all isomorphism classes of good drawings of Kn for
n ≤ 9. The resulting data has been used to obtain ex-
act values for various extremal and existential prob-
lems on good drawings of Kn, both for n ≤ 9 and,
via extension of relevant instances, for more vertices.
Similar data has been successfully used for combina-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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torially different configurations of points [2], to ob-
tain counterexamples, induction bases, or, in general,
a better intuition for various problems.

In contrast to, e.g., [20], our generation of all weak
isomorphism classes is based on rotation systems. In
Section 2, we give the basic theoretical background on
rotation systems and sketch techniques that reduced
the required computational effort. In Section 3, we
describe the enumeration of all non-isomorphic draw-
ings of each weak isomorphism class. Applications
and the outcome of several computations on the data
are given in Section 4. Parts of this work have been
presented in the master’s thesis [17] of Pammer.

2 Rotation Systems

Rotation systems were devised as tools for investigat-
ing embeddings of graphs on higher-genus surfaces [6].
Let D be an (arbitrary) drawing of a graph G(V,E).
The rotation ρD(v) (or ρ(v) when D is clear from the
context) of a vertex v in D is the clockwise cyclic or-
der of edges incident to v, given as a sequence (that
is to be interpreted circularly) of the second vertices
of all edges at v. (Note that if G = Kn then ρ(v) is a
cyclic permutation of V \ {v}). The rotation system
(abbrev. RS) of D is the set of rotations of all vertices
of D and is denoted by R(D). We consider two rota-
tion systems to be equivalent if one can be obtained
from the other by relabeling and optional inversion
of all rotations. Further, we call a rotation system
realizable if it is the rotation system of a good draw-
ing of a complete graph. The following two results
imply that for complete graphs, the rotation system
uniquely determines the weak isomorphism class of a
good drawing (see also [9]), a property that is central
to our work.

Theorem 1 (Pach, Tóth [16]) The rotation sys-
tem of a good drawing of the complete graph deter-
mines the pairs of crossing edges.

Theorem 2 (Gioan [4]) The set of crossing pairs of
edges determines the equivalence class of the rotation
system of a good drawing of the complete graph.

Note that this is, in general, only true for com-
plete graphs: Determining the crossing number of a
(general) graph with a predefined rotation system is
NP-complete [19]. A result similar to the above ones
is also known for isomorphism classes:

Theorem 3 (Kynčl [9]) Two good drawings are
isomorphic iff there exists a bijection between their
vertices such that (i) they are weakly isomorphic,
(ii) for each edge, the order of crossings along its im-
age is the same, and (iii) for each crossing the radial
order of the edge parts emanating to the four involved
vertices is the same (or inverted for all crossings).

1 2

3

4

1 2

3

4

1:234
2:143
3:124
4:132

1:234
2:143
3:142
4:123

DY
4DX

4

Figure 1: The two different drawings of K4, with their
rotation systems.

K4 has only two (weak) isomorphism classes,
see Figure 1. We denote them by DX

4 and DY
4 . The

basic observation leading to Theorem 1 is that the
sub-drawing induced by four points has a rotation
system equivalent to R(DX

4 ) if the four points are
involved in a crossing, and a rotation system equiva-
lent to R(DY

4 ) otherwise. (Therefore, Property (iii)
in Theorem 3 is also determined by the rotation sys-
tem for drawings of the complete graph.) The other
direction (Theorem 2) is slightly more involved and
requires considering also 5-tuples. Unless stated oth-
erwise, we will consider only good drawings of com-
plete graphs (and their rotation systems). We have:

Observation 1 When given the rotation around
three vertices in a drawing of K4, the relative posi-
tion of these three vertices in the rotation around a
fourth vertex v is determined.

We generate all rotation systems of size n by ex-
tending the ones of size n− 1 in the following way. In
the sequence representing the rotation around every
vertex, we place the new vertex vn in all possible ways.
Each choice also determines parts of ρ(vn) by Obser-
vation 1. The relative order of two vertices might be
different when considering different 4-tuples (which
indicates that the choice is invalid) and therefore all
4-tuples containing vn have to be checked. Hence,
we obtain a set of rotation systems where each ro-
tation system restricted to any four vertices is either
the one of DX

4 or DY
4 . We call such a rotation system

consistent. Still, there exist non-realizable consistent
rotation systems. For K5, there are five (weak) iso-
morphism classes, and two non-realizable consistent
rotation systems. For n ≥ 6, there are more isomor-
phism classes than weak isomorphism classes. We de-
scribe our approach for checking realizability, which
is also used for enumerating all isomorphism classes,
in the next section.

To ensure that no two equivalent rotation systems
are stored, we guess a vertex that is given the la-
bel 1. Then we guess a second vertex to label all ver-
tices from 2 to n, either counterclockwise or clockwise
around the first one. This way, we obtain 2n(n − 1)
different labelings. Each labeling gives a matrix con-
sisting of the n rotations. We use the lexicographically
smallest one for storing the rotation system. Hence,
duplicates can be filtered easily.
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Figure 2: Four drawings of the same rotation system.
The two at the bottom are also isomorphic (consider
the labeling horizontally mirrored), the others are not.

3 Realizability and Enumeration

It remains to decide realizability of a rotation sys-
tem and, in case of a positive decision, to count the
number of its isomorphism classes. Deciding whether
a rotation system of Kn can be realized as a good
drawing can be done in polynomial time [10]. Since
we also want to enumerate all non-isomorphic draw-
ings of each rotation system, we use a less sophis-
ticated approach that, using properties of the rota-
tion system, works fast for small instances. The basic
idea is to use a backtracking algorithm to incremen-
tally build a good drawing, which is represented as
a doubly-connected edge list. This algorithm can be
used for both checking realizability and for obtaining
all realizations of a rotation system.

Similar to recognizing equivalent rotation systems,
we use a lexicographically smallest labeling to check
isomorphism. However, finding a “fingerprint” for
the isomorphism class is more complicated. Consider
Theorem 3 (i) and (ii). The first part of the finger-
print is the lexicographically smallest rotation sys-
tem. The labeling of the vertices defines an order on
them, which, in turn, gives a lexicographic order on
the edges. For each edge e, from smallest to largest,
we list the indices of the edges that cross e, in the or-
der when going from the smaller to the larger vertex.
However, there are, in general, several lexicographi-
cally smallest labelings for a rotation system, which
could give different sequences for the edge crossings.
Hence, for a given good drawing, we have to check all
such labelings of the rotation system to obtain the lex-
icographically smallest sequence of edge crossings. An
example is given in Figure 2, showing four drawings
of one rotation system, of which two are isomorphic.

4 Applications

The numbers of (weak) isomorphism classes are given
in Table 1.

n realizable RS
non-iso. non-iso. drawings
drawings per RS

3 1 1 1 . . . 1
4 2 2 1 . . . 1
5 5 5 1 . . . 1
6 102 121 1 . . . 3
7 11 556 46 999 1 . . . 57
8 5 370 725 502 090 394 1 . . . 46 571
9 7 198 391 729 1 . . . > 2.3×1010

Table 1: The numbers of weak isomorphism classes
and non-isomorphic good drawings of Kn, in total and
per RS.

4.1 Simple Hamiltonian Cycles

For n = 7, Rafla’s numbers [20] match ours, confirm-
ing the conjecture that every good drawing has a sim-
ple (i.e., crossing-free) Hamiltonian cycle for n ≤ 7.
In addition, we verified the conjecture for n ≤ 9.

4.2 Maximum Number of Crossings

As every drawing of K4 has at most one crossing,
there are at most

(
n
4

)
crossings in a good drawing.

But in contrast to complete geometric graphs (where
only the set with all points in convex position at-
tains this bound), there exist many weak isomor-
phism classes with this maximum number of crossings.
We call them max-crossing drawings. Harborth and
Mengersen [8] already considered max-crossing draw-
ings, enumerating all 15 non-isomorphic ones for K6.

Kynčl [9] gives a lower bound of 2n−5 (n−3)!
n for the

number of max-crossing realizable RS, but no up-
per bounds better than that for all realizable RS are
known. Table 2 gives the numbers obtained from our
data. Observe that all max-crossing realizable RS can
be obtained by extending only max-crossing realizable
RS. Therefore, we can go beyond the n = 9 barrier
by extending only such systems. Note the slight dif-
ference to the question in [11, Problem 2], asking for
the number of max-crossing consistent RS.

It is known that every good drawing of Kn contains
a max-crossing sub-drawing of size Ω(log1/8 n) [14]
(in fact, the bound is given for two particular max-
crossing graphs). Table 2 also lists the number of
realizable RS with no max-crossing 5-tuple, showing
that no such RS of size larger than 12 exists.

4.3 Crossing Number of K13

The crossing number of K13 is known to be between
219 [12] and 225 [18]. For odd n, the crossing number
has the same parity as H(n) [13]. For a drawing D
of Kn with cr(D) crossings there exists a vertex v s.t.
cr(D \v) ≤

⌊
n−4
n cr(D)

⌋
[18]. This allows us to obtain

the exact value for cr(K13) by only extending rota-
tion systems with few crossings. By this we were able
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n
max-crossing realiz. RS without

realiz. RS drawings 5-crossing 5-tuple
4 1 1 2
5 2 2 3
6 10 15 33
7 115 1 477 606
8 2 657 8 373 474 19 195
9 82 957 449 188
10 3 226 173 4 208 379
11 4 162 266
12 32 290
13 0

Table 2: The number of realizable rotation systems
with the maximum number of crossings and the num-
ber of sets with no 5-tuple with 5 crossings.

to show that cr(K13) ∈ {223, 225}. For obtaining all
rotation systems where K13 has at most 223 crossings
(if they exist), it is sufficient to extend all rotation
systems of K9 with at most 38 crossings, with inter-
mediate RS for n = 10, 11, 12 of at most 64, 102, and
154 crossings. The computations are ongoing.

4.4 Empty Triangles

In a good drawing D, a 3-cycle spanned by three
edges of D is called an empty triangle if the interior
of one of its sides does not contain any vertices of D.
Let ∆(n) be the minimum number of empty triangles
over all good drawings of Kn. Harborth [7] showed
2 ≤ ∆(n) ≤ 2n− 4, asking whether this upper bound
is tight. The currently best known lower bound of n is
given in [3], where also tightness of the upper bound
is stated for n ≤ 8. Using our data, we could extend
the positive answer to Harborth’s question for n = 9.

5 Conclusion

We described the generation of all weakly isomorphic
good drawings of Kn for n ≤ 9. The obtained data
allowed us to investigate several open existential and
extremal problems for such drawings. We expect the
data to be helpful for settling further questions in this
area, like the crossing number of K13 or the question
of which RS maximize the number of non-isomorphic
drawings.
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A Linear-Time Algorithm for the Queue-Numbers of
Proper Triangulated Cacti✄

Toru Hasunuma②

❆�✁✂☎✆✝✂

We present a linear-time algorithm for computing the
queue-numbers of proper triangulated cacti.

✶ ■✞✂☎✟❞✠✝✂✡✟✞

A k-queue layout of a graphG ❂ (V❀ E) consists of a
vertex-ordering✛ : V(G) ✼☛ ❢1❀2❀ ✿ ✿ ✿ ❀ ❥V(G)❥☞ and an
assignment✚ : E(G) ✼☛ ❢1❀2❀ ✿ ✿ ✿ ❀ k☞ of the edges tok
queues such that no two edges assigned to the same queue
nest, i.e., for eachi ✷ ❢1❀2❀ ✿ ✿ ✿ ❀ k☞ and any two edges
❢u❀ v☞❀ ❢x❀ y☞ ✷ ✚

✌1(i), it does not hold that✛(u) ❁ ✛(x) ❁

✛(y) ❁ ✛(v). The minimum number of queues for a queue
layout ofG is thequeue-number qn(G) of G. A graphG is
called ak-queue graph if qn(G) ✔ k. Figure 1 illustrates a

✍
✎

❜ ❝

✍ ❡ ✏

❛
❛ ❜ ❝ ❡ ✏

❛ ✍ ❜ ❡ ❝ ✏

●

Figure 1: Queue layouts of a graphG.

2-queue layout and a 1-queue layout of a graphG, where
the vertices are placed from left to right on a horizontal
line according to the vertex-ordering and the edges above
(respectively, below) the horizontal line are assigned to the
first (respectively, second) queue. The notion of queue lay-
outs was originally introduced by Heath, Leighton, and
Rosenberg [10, 11]. Queue layouts of graphs find ap-
plications in several areas of computer science such as
fault-tolerant computing [14] and three-dimensional graph
drawing [3, 6]. Until now, upper bounds on the queue-
number have been proved for many graph classes such
as complete graphs, complete bipartite graphs, trees [11],
outerplanar graphs [10], planar graphs [1, 2], 2-trees [13],
graphs with bounded tree-width [3], graphs of bounded
genus [4], hypercubes [7], and underlying graphs of iter-
ated line digraphs [8].

✑This work was supported by JSPS KAKENHI 25330015.
✒Institute of Socio-Arts and Sciences, The University of Tokushima.

The challenging open problem on queue layouts is the
conjecture posed by Heath et al. [10, 11] that every pla-
nar graph can be laid out usingO(1) queues. Di Battista,
Frati, and Pach [1] proved that every planar graph can be
laid out usingO(log4 n) queues (and also mentioned that
the upper bound can be improved toO(log2 n)), which im-
proves the previously known bound ofO(

♣
n) [5]. Du-

jmović [2] recently proved anO(logn) upper bound for
the queue-number of a planar graph, and moreover Du-
jmović, Morin and Wood [4] presented poly-logarithmic
upper bounds for graphs of bounded genus. The problem
of laying out planar graphs using a constant number of
queues still remains open, while if we restrict ourselves
to outerplanar graphs, such a problem has been solved,
i.e., Heath et al. [10] proved that every outerplanar graph
can be laid out using two queues. Heath and Rosenberg
[11] also characterized 1-queue graphs as arched leveled
planar graphs and proved that the problem of recogniz-
ing 1-queue graphs is NP-complete. Since the planarity
can be e✓ciently tested [12], the problem of computing
the queue-number of a planar graph is NP-hard. In [9],
it has been shown that such a problem can be solved in
linear-time if we restrict ourselves to maximal outerplanar
graphs. A triangulated cactus is a graph in which every
block is a maximal outerplanar graph. Thus, the class of
triangulated cacti is a subclass of the outerplanar graphs
and a superclass of the maximal outerplanar graphs. A tri-
angulated cactusG is called proper ifG has no vertex with
degree one. In this paper, we extend the result shown in
[9] on maximal outerplanar graphs to the class of proper
triangulated cacti, i.e., we present a linear-time algorithm
for computing the queue-numbers of proper triangulated
cacti.

✕ P☎✖✗✡✘✡✞✆☎✡✖✁

A maximal outerplanar graph is an outerplanar graph to
which we cannot add a new edge while preserving the out-
erplanarity. Aleaf is a vertex with degree one. Ablock
of a graph is a maximal connected subgraph without a cut-
vertex. A block with at least three vertices is acyclic block,
while a block with two vertices is aK2-block. For a con-
nected graphG, the block-cut-vertex tree BCT (G) is the
graph whose vertices are blocks and cut-vertices ofG and
in which two vertices are adjacent if and only if one is
a cut-vertex and the other is a block containing the cut-
vertex. A leaf-block of G is a block corresponding to a

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a preprint
rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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leaf of BCT (G). A triangulated cactus is a graph in which
every block is a maximal outerplanar graph. A triangu-
lated cactus isproper if it has no leaf. Acaterpillar is a
treeT such that the graph obtained fromT by deleting all
the leaves is a path. A path withn vertices is denoted by
Pn. For a vertex-ordering✛ of G andu❀ v ✷ V(G), we may
write u ❁� v instead of✛(u) ❁ ✛(v). Let✛ and✛✵ be two
vertex-orderings ofG. If there exists an automorphism✣
of G such that✛(v) ❂ ✛

✵(✣(v)) for all v ✷ V(G), then✛
and✛✵ are isomorphic and we write✛ ✁ ✛

✵. Let H be a
subgraph ofG. The vertex-ordering ofH obtained from
the vertex-ordering✛ of G is called therestricted vertex-
ordering of H with respect to✛ and is denoted by✛H.

✸ ◗✂✄✂✄☎✆✂✝✞✄❡✟ ♦✠ ❊✡☛✄☞✌✄✌ ❋❛☞ ●❡❛✍✎✟

We first consider queue-numbers of specific proper trian-
gulated cacti.

Definition 1 A fan graphFn is a maximal outerplanar
graph withn vertices such that there exists a vertex with
degreen ✏ 1. Thecenter vertexof Fn is a vertex with de-
green ✏ 1 in Fn. An extended fan graphF(n1❀ n2❀ ✿ ✿ ✿ ❀ nk),
where3 ✔ n1 ✔ n2 ✔ ✑ ✑ ✑ ✔ nk, is the graph obtained fromk
fan graphsFn1❀ Fn2❀ ✿ ✿ ✿ ❀ Fnk by identifying the center ver-
tices ofFn1❀ Fn2❀ ✿ ✿ ✿ ❀ Fnk with the same vertex.

The queue-numbers of extended fan graphs can be com-
pletely determined as follows. Note that ifG contains a
subgraph whose queue-number is two, thenqn(G) ❂ 2.

Lemma 1

✒ qn(F(7)) ❂ qn(F(4❀ 5)) ❂ qn(F(3❀ 4❀ 4)) ❂ 1.

✒ qn(F(8)) ❂ qn(F(3❀ 6)) ❂ qn(F(5❀ 5)) ❂ 2.

✒ qn(F(3❀ 3❀ 5)) ❂ qn(F(4❀ 4❀ 4)) ❂ qn(F(3❀ 3❀ 3❀ 3)) ❂
2.

In particular, a vertex-ordering of a 1-queue layout of
F(3❀ 3❀ 3) is essentially unique.

Lemma 2 Let V(F(3❀ 3❀ 3)) ❂ ❢vi ❥ 0 ✔ i ✔ 6❣ such
that v0 is the center vertex and❢v1❀ v2❣❀ ❢v3❀ v4❣❀ ❢v5❀ v6❣ ✷

E(F(3❀ 3❀ 3)). Every vertex-ordering for a 1-queue layout
of F(3❀ 3❀ 3) is isomorphic to the vertex-ordering✛ defined
asv1 ❁� v2 ❁� v3 ❁� v0 ❁� v4 ❁� v5 ❁� v6.

✹ ❋✂☞✌❛✝✄☞☛❛✉ P❡♦✍✄❡☛✓✄✟ ♦✠ ❛ ✶☎◗✂✄✂✄ ▲❛②♦✂☛ ♦✠

❛ ●❡❛✍✎

Lemma 3 Let G be a 1-queue graph which has a triangle
K3 and a pathPn as disjoint subgraphs. For any vertex-
ordering✛ of a 1-queue layout ofG, it does not hold that
✛✕

1
Pn

(1) ❁�❁ ✛✕
1

K3
(1) ❁� ✛✕

1
K3

(3) ❁� ✛✕
1

Pn
(n).

From Lemma 3, we can see that in any 1-queue layout
of a graph, there is no path through a triangle. Thus, we
have the next corollary.

Corollary 4 Let G be a 1-queue connected graph. Let✛

be a vertex-ordering of a 1-queue layout ofG. If we add
a K3 with V(K3) ❂ ❢x❀ y❀ z❣ ❭ V(G) ❂ ✖ so that✛✕1(1) ❁�
x ❁� y ❁� z ❁� ✛✕

1(❥V(G)❥), then the resultant vertex-
ordering does not induce a 1-queue layout ofG ❬ K3.

If we restrict ourselves to maximal outerplanar graphs,
we can strengthen Corollary 4 as follows.

Lemma 5 LetG be a 1-queue maximal outerplanar graph.
Let✛ be a vertex-ordering of a 1-queue layout ofG. If we
add aK2 with V(K2) ❂ ❢x❀ y❣❭V(G) ❂ ✖ so that✛✕1(1) ❁�
x ❁� y ❁� ✛✕

1(❥V(G)❥), then the resultant vertex-ordering
does not induce a 1-queue layout ofG ❬ K2.

Besides, we can show the following lemma.

Lemma 6 Let G be a 1-queue graph which has triangles
K3 andK✵3 as disjoint subgraphs. For any vertex-ordering
✛ of a 1-queue layout ofG such that✛✕1

K3
(1) ❁� ✛✕

1
K✗3

(1), it

holds that✛✕1
K3

(2) ❁� ✛
✕1
K✗3

(1) and✛✕1
K3

(3) ❁� ✛
✕1
K✗3

(2).

Namely, there are essentially two possible layouts of
two disjoint triangles in any 1-queue layout of a graph.

✺ ❚✘♦☎❊✌✙✄☎✚♦☞☞✄✜☛✄✌ ❚❡✓❛☞✙✂✉❛☛✄✌ ✚❛✜☛✓

In this section, we consider the case that a triangulated
cactusG has noK2-block, i.e.,G is 2-edge-connected.

Using Lemma 5, we can show the following lemma.

Lemma 7 Let G✵ be the graph obtained from a 1-queue
maximal outerplanar graphG by adding a triangle at a ver-
tex x of G. If G✵ can be laid out using one queue with re-
spect to a vertex-ordering✛✵, then✛✵G(x) ✷ ❢1❀ 2❀ ❥V(G)❥ ✏
1❀ ❥V(G)❥❣.

By Lemmas 5, 6, and 7, the next lemma is obtained.

Lemma 8 Let G✵ be the graph obtained from a maximal
outerplanar graphG by adding three triangles at three ver-
tices injectively. Then,qn(G✵) ❂ 2.

Thus, any cyclic block in a 1-queue 2-edge-connected
triangulated cactus has at most two cut-vertices. Besides,
using Lemmas 1 and 2, we can show the following result.

Lemma 9 Let G be a 1-queue 2-edge-connected triangu-
lated cactus. Then, there are at most three cyclic blocks
in G which contain the same cut-vertex. If there are three
cyclic blocks inG which contain the same cut-vertex, then
one of them is a triangle which contains only one cut-
vertex.

From Lemmas 8 and 9, we can see that for a 1-queue 2-
edge-connected triangulated cactusG, BCT (G) is a cater-
pillar with the maximum degree✢ ✔ 3. Applying Lemmas
5, 6, and 7, we have the following lemma.
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Lemma 10 Let B1❀ B2❀ B3 be three cyclic blocks of a tri-
angulated cactusG such thatB1 andB2 (respectively,B2

andB3) have the same cut-vertexx (respectively,y), where
x ✱ y. If G can be laid out using one queue with re-
spect to a vertex-ordering✛ such that✛(x) ❁ ✛(y), then
maxv✷V(B1) ✛(v) ❁ minv✷V(B3) ✛(v).

By Lemma 10, we may assume a direction for layouts of
blocks in a 1-queue layout of a 2-edge-connected triangu-
lated cactusG. Let (B0❀ x1❀ ✿ ✿ ✿ ❀ xp❀ Bp) be a longest path in
BCT (G), whereBi is a cyclic block andx j is a cut-vertex
such that

P
1✔i✔p ❥V(Bi)❥ is the maximum among longest

paths inBCT (G). The setVO(Bi) of vertex-orderings for
1-queue layouts ofBi can be computed inO(❥V(Bi)❥) time
by using the algorithm in [9]. From results in [9], we
can see that❥VO(Bi)❥ � 3. Thus, by using Lemma 7, we
can check in a constant time whether a vertex-ordering in
VO(Bi) is consistent with a vertex-ordering inVO(Bi✰1).
Therefore, we can computeqn(G) in O(❥V(G)❥) time by
employing the dynamic programing approach.

✻ ✁✂✄☎❡✂ ❚✂r✆✝✞✟✠✆✡❡☛ ❈✆☞✡r

Let G1✌1✌1 be the graph obtained from three triangles
K1

3❀ K2
3❀ K3

3 by adding a new vertexx and joining x to
a vertex vi ✍ V(Ki

3) for 1 � i � 3. For a 3-tuple
(i❀ j❀ k) ✱ (1❀ 1❀ 1) of positive integers, letGi✌ j✌k be the graph
obtained fromG1✌1✌1 by replacing the edge❢x❀ v1❣ (respec-
tively, ❢x❀ v2❣ and❢x❀ v3❣) with the pathPi (respectively,P j

andPk). Applying Lemmas 3 and 6, we have the next fact.

Lemma 11 qn(Gi✌ j✌k) ❂ 2.

From Lemma 11 (and Lemma 8), the following lemma
is obtained, where an end-cut-vertex is a cut-vertex which
has at most one non-leaf-block.

Lemma 12 LetG be a 1-queue proper triangulated cactus.
Then,BCT (G) is a caterpillar with✎ � 5 such that except
for leaf-blocks adjacent to an end-cut-vertex, every leaf-
block is a fan graph whose center vertex is a cut-vertex.

A path-component of a 1-queue proper triangulated
cactusG is a maximal connected subgraph in the graph
obtained fromG by deleting every maximal 2-edge-
connected subgraph (2-edge-connected component) ex-
cept for a cut-vertex incident to a bridge. LetHi be an
extended fan graph for 1� i � k. Let P(H1❀ ✿ ✿ ✿ ❀ Hk) be
the graph obtained from the pathPk ❂ (v1❀ ✿ ✿ ✿ ❀ vk) andHi

(1 � i � k) by identifying the center vertex ofHi with vi

for 1 � i � k. From Corollary 4 and Lemma 6, we may
assume a direction for layouts ofH1❀ ✿ ✿ ✿ ❀ Hk in a 1-queue
layout ofP(H1❀ ✿ ✿ ✿ ❀ Hk).

Lemma 13 For any vertex-ordering✛ of a 1-queue lay-
out of P(H1❀ ✿ ✿ ✿ ❀ Hk), if ✛✏1

Hk✑1
(1) ❁✒ ✛✏1

Hk
(1), then for all

1 � i ❁ k, it holds that✛✏1
Hi

(❥V(Hi)❥ ✓ 1) ❁✒ ✛✏
1

Hi✕1
(1) and

✛✏
1

Hi
(❥V(Hi)❥) ❁✒ ✛✏

1
Hi✕1

(2).

Definition 2 For a vertex-ordering✛ in a 1-queue layout
of an extended fan graphH, a triangleK3 with V(K3) ❂

❢a❀ b❀ c❣, where a is the center vertex ofH, is called
right-toppling (respectively,upright and left-toppling) if
✛K3(a) ❂ 1 (respectively,2 and3).

Definition 3 Let G be a 1-queue extended fan graph.
Then,G is one-sided toppling(respectively,two-sided top-
pling) if for any vertex-ordering✛ of a 1-queue layout of
G, G has an upright triangle and either a right-toppling tri-
angle or a left-toppling triangle (respectively, an upright
triangle, a right-toppling triangle, and a left-toppling tri-
angle).

Except forF(3) ❂ K3 and F(4), the class of 1-queue
extended fan graphs is divided into two types.

Lemma 14 F(5), F(3❀ 3), andF(3❀ 4) are one-sided top-
pling, whileF(6), F(4❀ 4), andF(3❀ 3❀ 3) are two-sided top-
pling.

Lemma 15 In any vertex-ordering✛ of a 1-queue layout
of P(H1❀ ✿ ✿ ✿ ❀ Hk) with ✛✏1

Hk✑1
(1) ❁✒ ✛✏1

Hk
(1), the following

properties hold for1 � i ❁ k.

✖ If Hi✰1 has an upright triangle, thenHi has no right-
toppling triangle.

✖ If Hi✰1 has a left-toppling triangle, thenHi has no
upright triangle and no right-toppling triangle.

Using Lemma 15, we can characterize 1-queue path-
componentsP(H1❀ ✿ ✿ ✿ ❀ Hk) as follows.

Lemma 16 Let S ❂ ❢H1❀ ✿ ✿ ✿ ❀ Hk❣ be a set of extended fan
graphs. LetNone(respectively,Ntwo) be the number of one-
sided toppling (respectively, two-sided toppling) extended
fan graphs inS . Then,qn(P(H1❀ ✿ ✿ ✿ ❀ Hk)) ❂ 1 if and only
if one of the following conditions holds:

✖ None✗ Ntwo � 1.

✖ None ❂ 2, Ntwo ❂ 0, and for the one-sided toppling
extended fan graphsHp andHq, where1 � p ❁ q �

k, everyHi (p ❁ i ❁ q) is a triangle.

Besides, we can show the next lemma.

Lemma 17 Let Gk be the graph obtained from
P(H1❀ ✿ ✿ ✿ ❀ Hp) and P(H✵

1❀ ✿ ✿ ✿ ❀ H✵
q) by joining the cen-

ter vertices of Hp and H✵
1 by a path of lengthk,

where k ✘ 2. Then, qn(Gk) ❂ 1 if and only if
qn(P(H1❀ ✿ ✿ ✿ ❀ Hp)) ❂ qn(P(H✵

1❀ ✿ ✿ ✿ ❀ H✵
q)) ❂ 1.

By Lemmas 16 and 17, we can determine the queue-
number of any path-component of a proper triangulated
cactus. In order to check the consistency of queue layouts
of a path-component and a 2-edge-connected component,
we can use the following lemma.
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Lemma 18 Let G✵ be the graph obtained from a 1-queue
maximal outerplanar graphG by adding the pathP3 at a
vertexx of G. If G✵ can be laid out using one queue with
respect to a vertex-ordering✛✵, then✛✵G(x) ✔ 4 or ❥V(G)❥ �
3 ✔ ✛

✵
G(x).

✼ ❆ ▲✁✂✄☎r✆✝✁✞✄ ❆✟✠✡r✁☛☞✞

Combining the results in Sections 5 and 6, we can design
a linear-time algorithm for the queue-numbers of proper
triangulated cacti.

Let G be a proper triangulated cactus. We first com-
pute the block-cut-vertex treeBCT (G) of G. If BCT (G)
is not a caterpillar with✌ ✔ 5, thenqn(G) :❂ 2. If
❥V(BCT (G))❥ ❂ 1, then apply the algorithm [9] for max-
imal outerplanar graphs. Let (x1❀ B2❀ x2❀ ✿ ✿ ✿ ❀ Bp✍1❀ xp✍1) be
the path obtained fromBCT (G) by deleting all the leaves,
whereBi (1 ❁ i ❁ p) is a block andxi (1 ✔ i ❁ p) is a cut-
vertex. If there exists a leaf-blockB✵ (respectively,B✵✵)
containingx1 (respectively,xp✍1) in which there exists a
triangle not containingx1 (respectively,xp✍1), then setB1

asB✵ (respectively,Bp asB✵✵). Otherwise, setB1 (respec-
tively, Bp) as a largest block containingx1 (respectively,
xp). For (B1❀ x1❀ B2❀ x2❀ ✿ ✿ ✿ ❀ ❀ Bp✍1❀ xp✍1❀ Bp), we iterate the
following manipulations.

Let (B j✰1❀ x j✰1❀ ✿ ✿ ✿ ❀ xk✍1❀ Bk), where j ❁ k, be the path
corresponding to a 2-edge-connected component. If there
exist Bi ( j ✎ 1 ❁ i ❁ k) with degBCT (G)(Bi) ✕ 3, xi

( j ❁ i ❁ k) with degBCT (G)(xi) ✕ 4, or a leaf-blockB ✏

❢B j✰1❀ Bk❣ with ❥V(B)❥ ✕ 4 which containsxi ( j ❁ i ❁ k),
then qn(G) :❂ 2. Compute the setVO(Bk) of vertex-
orderings for 1-queue layouts ofBk that are consistent with
a vertex-ordering inVO(xk) if k ❁ p. If VO(Bk) ❂ ✑, then
qn(G) :❂ 2. Otherwise, iterate the next manipulations
for j ❁ t ❁ k in a dynamic programing approach while
qn(G) ✱ 2.

1. Compute the setVO(Bt) of vertex-orderings for 1-
queue layouts ofBt that are consistent with a vertex-
ordering inVO(Bt✰1).

2. If VO(Bt) ❂ ✑, thenqn(G) :❂ 2.

Let (Bi✰1❀ xi✰1❀ ✿ ✿ ✿ ❀ x j✍1❀ B j), wherei ❁ j, be the path
corresponding to a path-componentPC which precedes
(B j✰1❀ x j✰1❀ ✿ ✿ ✿ ❀ xk✍1❀ Bk). If there exists a leaf-block con-
tainingx❵ (i ❁ ✒ ❁ j) which is not a fan graph whose center
vertex isx❵, thenqn(G) :❂ 2. LetG[x j] denote the graph
obtained from the subgraph induced by the closed neigh-
borhood ofx j in G by deleting a leaf. Compute the set
VO(x j) of vertex-orderings for 1-queue layouts ofG[x j]
that are consistent with a vertex-ordering inVO(B j✰1). By
using Lemmas 16 and 17, we can check whetherPC can be
laid out using one queue or not. Here, we regardG[x j] as a
two-sided toppling (respectively, one-sided) extended fan
graph if for any vertex-ordering inVO(x j), G[x j] has a left-
toppling triangle (respectively,G[x j] has an upright trian-
gle, and there exists a vertex-ordering inVO(x j) such that

G[x j] has no left-toppling triangle). This part of checking
the queue-number of a path-component can be represented
by a finite automaton. If there exists a 1-queue layout of
PC, then we setVO(xi) as the set of vertex-orderings for 1-
queue layouts ofG[xi] which are consistent with a 1-queue
layout ofPC.

Our algorithm can also be applied to a triangulated cac-
tusG such that the graph obtained fromG by deleting all
the leaves is a proper triangulated cactus.
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Simple strategies versus optimal schedules in multi-agent patrolling

Akitoshi Kawamura∗ Makoto Soejima†

Abstract

Suppose that we want to patrol a fence (line segment)
using k mobile agents with given speeds v1, . . . , vk so
that every point on the fence is visited by an agent at
least once in every unit time period. A simple strategy
where the ith agent moves back and forth in a segment
of length vi/2 patrols the length (v1+ · · ·+vk)/2, but
it has been shown recently that this is not always
optimal. Thus a natural question is to determine the
smallest c such that a fence of length c(v1+· · ·+vk)/2
cannot be patrolled. We give an example showing
c ≥ 4/3 (and conjecture that this is the best possible).

We also consider a variant of this problem where
we want to patrol a circle and the agents can move
only clockwise. We can patrol a circle of perimeter
rvr by a simple strategy where the r fastest agents
move at the same speed. We give an example where
we can achieve the perimeter of 1.05maxr rvr (and
conjecture that this constant can be arbitrary big).

We propose another variant where we want to pa-
trol a single point under the constraint that each agent
i = 1, . . . , k can visit the point only at a predefined
interval of ai or longer. This problem can be reduced
to the discretized version where the ai are integers and
the goal is to visit the point at every integer time. It
is easy to see that this discretized patrolling is im-
possible if 1/a1 + · · · + 1/ak < 1, and that there is
a simple strategy if 1/a1 + · · · + 1/ak ≥ 2. Thus we
are interested in the smallest c such that patrolling is
always possible if 1/a1 + · · · + 1/ak ≥ c. We prove
that α ≤ c < 1.546, where α = 1.264 . . . (and conjec-
ture that c = α). We also discuss the computational
complexity of related problems.

1 Introduction

In patrolling problems, a set of mobile agents are de-
ployed in order to protect or supervise a given area,
and the goal is to leave no point unattended for a
long period of time. Besides being a well-studied
task in robotics and distributed algorithms, patrolling
raises interesting theoretical questions [4]. Recent
studies [2, 6, 3] have shown that finding an optimal
strategy is not at all straightforward, even when the
terrain to be patrolled is as simple as it could be. We
continue this line of research in three basic settings:

∗University of Tokyo
†University of Tokyo

patrolling a line segment, a circle, and a point. We
will be particularly interested in the ratio by which
the best schedule could outperform the simple strat-
egy for each problem.

1.1 Fence patrolling

In 2011, Czyzowicz et al. [2] proposed the following
problem:

Fence Patrolling Problem. We want to patrol a
fence (line segment) using k mobile agents. We are
given the speed limits of the agents v1, . . . , vk and
the idle time T > 0. For each point x on the fence
and time t ∈ R, there must be an agent who visits the
point x during the interval [t, t + T ). How long can
the fence be?

Formally, a fence is an interval [0, L], and a sched-
ule is a k-tuple (a1, . . . , ak) of functions, where each
ai : R→ R satisfies |ai(s)−ai(t)| ≤ vi · |s− t| for all s,
t ∈ R. It patrols the fence with idle time T if for any
time t ∈ R and any location x ∈ [0, L], there are an
agent i and a time t′ ∈ [t, t+ T ) such that ai(t′) = x.

Note that if we can patrol a fence of length L with
idle time T , we can patrol a fence of length αL with
idle time αT by scaling, for any α > 0. Thus, we are
only interested in the ratio of L and T . Unless stated
otherwise, we fix the idle time to T = 1.

We also note that in previous work [2, 6], a sched-
ule was defined as functions on the halfline [0,+∞)
(instead of R) and the requirement for patrolling was
that each location be visited in every length-T time
interval contained in this halfline. Our slight devia-
tion from this definition is justified in Section 2 of the
full version [7].

Czyzowicz et al. [2] discussed the following simple
strategy that patrols a fence of length (v1+ · · ·+vk)/2
(with idle time 1), and proved that no schedule can
patrol more than twice as long a fence as this strategy:

Partition-based strategy. Divide the fence into k
segments, the ith of which has length vi/2. The
agent i moves back and forth in the ith segment.

They conjectured that this gives the optimal sched-
ule. However, Kawamura and Kobayashi [6] exhibited
a setting of speed limits v1, . . . , vk and a schedule
that patrols a fence slightly longer than the partition-
based strategy. Thus, the following natural question
arises: what is the biggest ratio between the optimal

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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schedule and partition-based strategy? Formally, we
want to determine the smallest constant c such that
no schedule can patrol a fence that is c times as long
as the partition-based strategy does.

Czyzowicz et al.’s result [2] says that 1 ≤ c ≤ 2,
and their conjecture was that c = 1. Kawamura and
Kobayashi’s example shows that c ≥ 42/41. Later
this lower bound was improved to 25/24 [1, 3]. In
Section 2, we will further improve the lower bound to
4/3. We conjecture that c = 4/3.

1.2 Unidirectional circle patrolling

In Section 3, we will discuss another problem proposed
by Czyzowicz et al. [2]:

Unidirectional Circle Patrolling Problem. We
want to patrol a circle using k mobile agents. We
are given the speed limits v1, . . . , vk of the agents.
For each point x on the circle and time t ∈ R, there
must be an agent who visits the point x during the
interval [t, t + 1). Each agent i is allowed to move
along the circle in clockwise direction with arbitrary
speed between 0 and its speed limit vi, but it is not
allowed to move in the opposite direction. How long
can the perimeter of the circle be?

They conjectured that the following strategy is op-
timal:

Runners strategy. Without loss of generality, we
can assume that v1 ≥ · · · ≥ vk. If all the fastest r
agents move at constant speed vr and placed equidis-
tantly, we can patrol a perimeter of length rvr. By
choosing the optimal r, we can achieve the perimeter
maxr rvr.

However, Dumitrescu et al. [3] constructed an ex-
ample where this strategy is not optimal. We conjec-
ture that this is not even a constant-ratio approxima-
tion strategy. Formally, we conjecture that for any
constant c, there exist v1, . . . , vk such that we can
patrol a perimeter of cmaxr rvr. We will define a
problem that is equivalent to this conjecture. Also,
we will prove that this is true for c = 1.05.

1.3 Point patrolling

In Section 4, we propose a new problem that we call
Point Patrolling Problem. In a sense, this is a simpli-
fication of the Fence Patrolling Problem. In this prob-
lem, agents patrol a single point instead of a fence. In
this case, it is natural to set a lower bound on the
intervals between two consecutive visits by an agent
instead of restricting its speed. Formally, we study
the following problem:

Point Patrolling Problem. We want to patrol a
point using k mobile agents. We are given the lower

bounds a1, . . . , ak on the intervals between two con-
secutive visits of the agents. A schedule is a k-tuple of
sets S1, . . . , Sk ⊆ R, where Si means the set of times
at which the ith agent visits the point. Thus, if t1 and
t2 are two distinct elements of Si, they must satisfy
|t1 − t2| ≥ ai. This schedule patrols the point with
idle time T if for any time t ∈ R, there are an agent i
and a time t′ ∈ [t, t+T ) such that t′ ∈ Si. How small
can the idle time be?

It turns out that this problem can be reduced to
a decision problem that asks whether it is possible
to visit the point at each integer time under the con-
straint that each agent i = 1, . . . , k can visit the point
only at a predefined interval of at least ai ∈ N. We will
see the relation between the amount 1/a1+ · · ·+1/ak
and this problem.

In Section 5, we will analyze the complexity of this
discretized problem.

2 A schedule patrolling a long fence

The following theorem says that for any c < 4/3, there
exists a schedule that patrols a fence c times as long as
the partition-based strategy. This improves the same
claim for c < 25/24 established previously [1, 3].

Theorem 1. For any c < 4/3, there are settings of
speed limits v1, . . . , vk and a schedule that patrols a
fence of length c(v1 + · · ·+ vk)/2 (with idle time 1).

Proof. We construct, for any positive integers n and
L, a schedule that patrols a fence of length L with
idle time 1 using n + L − 1 agents with speed 1 and
nL agents with speed 1/(2n − 1). Note that with
the partition-based strategy, the same set of agents
would patrol (with idle time 1) a fence of length 1

2 (n+
L− 1 + nL/(2n− 1)). The ratio between L and this
approaches 4/3 when 1� n� L, and hence we have
the theorem. The schedule that proves our claim is
as follows (Figure 1):

• Each of the n + L − 1 agents Ai (−n < i <
L) with speed 1 visits the locations i and i +
n − 1/2 alternately (at its maximal speed); it is
at location i at time 0. (This means that some
agents occasionally step out of the fence [0, L]; to
avoid this, we could simply modify the schedule
so that they stay at the end of the fence for a
while.)

• Each of the nL agents Bi,j (0 ≤ i < L, 0 ≤ j < n)
with speed 1/(2n− 1) visits the locations i+1/2
and i+1 alternately (at its maximal speed); it is
at location i+ 1/2 at time j + 1/2.

It can be verified that this schedule patrols the fence
(see the full version [7]).
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Figure 1: The strategy in the proof of Theorem 1 when n = 3 and L = 8. The trajectories of the agents are
the thick solid lines, and the regions they cover (the points that have been visited during the past unit time, see
appendix) are shown shaded. The n + L − 1 faster agents A−n+1, . . . , AL−1 (left) move back and forth with
period 2n− 1, but leave some triangular regions (dotted) uncovered. These regions are covered by the nL slow
agents B0,0, . . . , Bn−1,L−1 (right; scaled up horizontally for clarity).

We conjecture that this constant 4/3 is the best
possible. That is,

Conjecture 2. No schedule can patrol a fence that
is more than 4/3 times as long as the partition-based
strategy.

3 Circle patrolling

We start by defining (c, k)-sequences, whose existence
is closely related to the Circle Patrolling Problem as
we will show in Lemma 3.

For a real number c > 1 and a positive integer k,
a (c, k)-sequence is a k-tuple of sets S1, . . . , Sk ⊆ R
with S1 ∪ · · · ∪ Sk = R such that for each i,

1. the set Si is a union of non-overlapping intervals
Si =

⋃
j∈Z[ai,j , bi,j ];

2. the length of each interval in Si is at most 1/(ci−
1), i.e., bi,j − ai,j ≤ 1/(ci− 1);

3. the distance between two consecutive intervals in
Si is exactly 1, i.e., ai,j+1 − bi,j = 1.

See the full version [7] for a proof of the following
lemma.

Lemma 3. Let c > 1.

1. If k agents with speed limits 1, 1/2, . . . , 1/k
can patrol a circle of perimeter c, then there is
a (c, k)-sequence.

2. If there is a (c, k)-sequence, then k agents with
speed limits 1, 1/2, . . . , 1/k can patrol a circle of
perimeter c/2.

In particular, the runners strategy for circle pa-
trolling is not a constant-ratio approximation strat-
egy if and only if for any constant c, there exists k
such that a (c, k)-sequence exists.

Using a computer program, we have found a
(2.1, 122) (see the full version [7] for details). Thus,

Theorem 4. There exist v1, . . . , vk and a schedule
that patrols a circle with perimeter 1.05maxr rvr.

We conjecture that for any constant c, there exist
an integer k and a (c, k)-sequence. Equivalently,

Conjecture 5. The runners strategy does not have
a constant approximation ratio. Formally, for any
constant c, there exist v1, . . . , vk and a schedule that
patrols a circle with perimeter cmaxr rvr.

4 Point patrolling

In this section, we will discuss Point Patrolling Prob-
lem. First, we observe that this problem can be re-
duced to a problem in which time is also discrete.
Consider a decision version of this problem. That
is, you are given T , and you need to decide whether
the idle time can be at most T . We can reduce the
original problem to this decision problem by binary
search. This decision problem can be discretized in
the following way:

Discretized Point Patrolling Problem. There are
k agents and they want to patrol a point. We are given
positive integers a1, . . . , ak. The interval between two
consecutive visits by the ith agent must be at least
ai. A schedule is called good if at each integer time
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the point is visited by at least one agent. Determine
whether there exists a good schedule.

For simplicity, we call (a1, . . . , ak) good if there ex-
ists a good strategy in Discretized Point Patrolling
Problem, and otherwise call it bad. It is not hard to
see the following.

Theorem 6. Agents with intervals (a1, . . . , ak) can
achieve the idle time of T for the (non-discretized)
Point Patrolling Problem if and only if (da1/T e, . . . ,
dak/T e) is good.

For the rest of this section, we will be interested
in sufficient conditions for (a1, . . . , ak) to be good or
bad.

Theorem 7. If
∑k
i=1 1/ai < 1, (a1, . . . , ak) is bad.

Proof. Let M be a sufficiently big integer. Out of
any consecutive M integer times, the ith agent can
visit the point at most dM/aie times. If (a1, . . . , ak)
is good, the sum of dM/aie must be at least M , but
this contradicts

∑k
i=1 1/ai < 1 when M is sufficiently

big.

On the other hand, the following gives a sufficient
condition for (a1, . . . , ak) to be good when a1, . . . , ak
are powers of 2:

Lemma 8. If
∑k
i=1 1/2

bi ≥ 1, (2b1 , . . . , 2bk) is good.

Proof. We prove the lemma by induction on k. Since∑k
i=1 1/2

bi ≥ 1, at least one of the following condi-
tions hold:

• For some i, bi = 0. In this case, (2b1 , . . . , 2bk) is
obviously good.

• There exist distinct i, j such that bi = bj = t.
Let S be a set of integers. If an agent with in-
terval 2d can visit the point at all elements in S,
there exists a schedule of two agents with inter-
vals d such that for each element in S, at least
one agent visits the point. Thus, we can replace
two agents with intervals 2t with an agent with
interval 2t−1. This replacement doesn’t change
the inverse sum of intervals, and by the assump-
tion of the induction (2b1 , . . . , 2bk) is good.

These two lemmas give a polynomial-time 2-
approximation algorithm for the (non-discretized)
Point Patrolling Problem.

In the rest of this section, we focus on the relation
between Discretized Point Patrolling Problem and the
amount

∑k
i=1 1/ai.

Theorem 9. If
∑k
i=1 1/ai ≥ 2, (a1, . . . , ak) is good.

Proof. Let bi be an integer that satisfies ai ≤ 2bi <
2ai. Since

∑k
i=1

1
2bi
≥ ∑k

i=1
1

2ai
≥ 1, by lemma 8,

(2b1 , . . . , 2bk) is good. Therefore, (a1, . . . , ak) is also
good.

This constant 2 can be improved, as shown the fol-
lowing theorem (see the full version [7] for a proof).

Theorem 10. If
∑k
i=1 1/ai > 1.546, (a1, . . . , ak) is

good.

On the other hand, the constant cannot be smaller
than

∑∞
i=0 1/(2

i + 1) = 1.264 . . . (again, see the full
version [7] for a proof):

Theorem 11. (2, 3, 5, . . . , 2k + 1) is bad.

We suspect that this cannot be improved:

Conjecture 12. Let α :=
∑∞

0 1/(2i +1) ≈ 1.264. If∑k
i=1 1/ai > α, (a1, . . . , ak) is good.

5 Complexity of problems related to point pa-
trolling

We have discussed approximation algorithms for pa-
trolling problems. This is because patrolling prob-
lems look unsolvable in polynomial time. In this sec-
tion, we will try to justify this intuition. Ideally,
we should prove NP hardness of patrolling problems,
but we failed to prove that. Instead, we prove NP-
completeness of some problems related to Discretized
Point Patrolling Problem in the full version [7].
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Continuous Geometric Algorithms for
Robot Swarms with Multiple Leaders
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Abstract

We consider the problem of building a dynamic and
robust network between mobile terminals with the
help of a large swarm of robots in the continuous Eu-
clidean plane. Individually, the robots have limited
capabilities, both in terms of global information and
computation. We propose a set of local continuous
algorithms that together produce a generalization of
a Euclidean Steiner tree. At any stage, the result-
ing overall shape achieves a good compromise between
local thickness, global connectivity, and flexibility to
further continuous motion of the terminals.

1 Introduction

Robot navigation is one of the classical application ar-
eas for computational geometry. How can we gather
the geometric information that is necessary for orient-
ing ourselves in a known or unknown environment?
How can we carry out geometric computations effi-
ciently, and how can we optimize specific objectives?
Without a doubt, the close interaction between theory
and practice for these challenges has motivated ma-
jor progress, both in robotics and in computational
geometry. Even without a specific focus on robotics,
a relatively new area of algorithmics has arisen from
considering not just a single active agent, but a whole
group or even swarm. Swarm robotics combines clas-
sical robotics with distributed algorithms and many
aspects of wireless sensor networks.

Traditionally, computational geometry has focused
on discrete algorithms. In this paper, we demonstrate
that a more continuous (not event-based) approach is
able to lead to interesting and non-trivial geometric
algorithms. In particular, we consider a large swarm
of mobile robots with very simple individual capa-
bilities. Motion is continuous, as is interaction and
response between different robots.

The challenge is to combine two fundamentally op-
posite objectives: How can we develop local self-
stabilizing mechanisms that allow the swarm to stay
locally well connected, even when being pulled apart
by several distant and mobile sites?

∗Department of Computer Science, TU Braunschweig,
Germany. maximilian@ernestus.de, s.fekete@tu-bs.de, mh-
saar@gmail.com, d.krupke@tu-bs.de

Figure 1: A robust robot swarm emulating a Steiner
tree between five diverging leader robots.

Related Work. Even in a centralized and static
setting with full information, we have to deal with
the well-known NP-hard problem of finding a good
Steiner tree [3]. There is a large body of work on
geometric swarm behavior; for lack of space, we only
mention Chazelle [1] for flocking behavior, and Fekete
et al. [2, 5] for geometric algorithms for static sen-
sor networks. As far as we know, only Hamann and
Wörn [4] have explicitly considered the construction
of Steiner Trees by a robot swarm. For static ter-
minals, they start with an exploratory network; as
soon as all terminals are connected, only best paths
are kept and locally optimized. More specific refer-
ences are given in Section 3.1, where they are used as
building blocks.

This Paper. We propose a set of local, self-
stabilizing algorithms that maintain a dynamic and
robust network between leader robots. The algo-
rithms ensure that the swarm adopts the directions of
multiple leaders, while preserving a uniform thickness
along the edges of the Steiner tree. We demonstrate
the usefulness of this approach by simulations with a
swarm of 400 robots, five leaders and various failure
rates.

2 Preliminaries

For a finite set of robots R with an externally con-
trolled subset of leader robots L ( R, |L| � |R|,
we want the remaining robots R \ L to maintain a
dynamic and robust network that keeps the swarm
connected, even in the presence of random robot fail-
ures and arbitrary leader movements. Thus, the over-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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all shape of the swarm should form a “thick” Steiner
tree among the leaders with the robots R \ L evenly
distributed along the edges, as shown in Figure 1.

Robots have the shape of circles; two of them are
connected when within a maximum distance and with
an unobstructed line of sight. Robots know the rela-
tive positions and orientations of their neighbors and
can communicate asynchronously. Each robot has
a unique ID; leader IDs are known by all others.
Robot’s translations and rotations are limited in ve-
locity and acceleration. Communication is possible by
broadcasting to immediate neighbors.

The perception of all robots is local; however, due
to the known position and orientation difference, each
robot can transform vectors of its neighbors to its own
coordinate system. We avoid multi-hop transforma-
tions to keep errors small.

3 Algorithm

The proposed approach consists of a set of local self-
stabilizing mechanisms that either detect a condition
or induce a force. The weighted sum of the induced
forces determines the robot motion; input for the lo-
cal mechanisms of the local state and environment of
the robot, output is a value for current robot motion.
In principle, these mechanisms are continuous. (Our
implementation described later updates at 60 Hz.)

We first discuss the base behavior of the robots in
Section 3.1, inducing an almost convex swarm shape.
This is subsequently improved by leader forces, sta-
bility improvement and thickness contraction.

3.1 Base Behavior

Our base behavior consists of three components that
result in a swarm shape of a droplet. (i) The flocking
algorithm of Olfati-Saber [8] considers regular distri-
bution and movement consensus. The algorithm is
a stateless equation based on potential fields and is
proven to converge. It uses three rules: Attraction
to neighbors, repulsion from too close neighbors, and
adaption to the velocity of neighbors. We slightly
modified the algorithm for better response to addi-
tional forces. (ii) An extended version of the bound-
ary detection algorithm of McLurkin and Demaine [7],
which determines if a robot lies on the boundary and
also identifies small holes1 by using the average angle.
(iii) The boundary tension of Lee and McLurkin [6],
which straightens and minimizes the boundary of the
swarm. This is done by simply pushing boundary
robots to the middle of its two boundary neighbors.

1The method theoretically allows the robots to distinguish
exterior and interior boundaries and determine their size, but
the limited precision and the convergence time limit this usage.

However, the base be-
havior without any other
forces results in at most
convex shapes before los-
ing connectivity. The fig-
ure to the right depicts a
situation in which the swarm is just about to lose
connectivity. For stronger control and more variable
shapes, leader forces are introduced.

3.2 Leader Forces

A single leader constitutes the simplest form of swarm
control. In this case the swarm motion is determined
by the leader’s velocity. With multiple (possibly an-
tagonistic) leaders, the swarm is not just steered, but
may be stretched to the limit until connectivity is lost.
Therefore, each robot needs to find an appropriate
balance between the influence of different leaders. See
top of Figure 2 for an illustration.

Figure 2: (Top) A one-dimensional scenario with two
leaders (red) moving in opposite directions. (Bottom)
With increasing distance to the leader, the effect shifts
from velocity matching to leader pursuit.

There are two ways of following a leader: either by
matching its velocity or by moving towards it. Veloc-
ity matching preserves the overall shape of the swarm,
but fails with multiple leaders. In addition, there are
accumulated losses in accuracy with each hop because
the velocity information needs to be passed between
robots with noisy sensors. On the other hand, moving
towards the leader causes a deformation of the swarm
and can also be used to control its shape when mul-
tiple leaders are used. However, regions close to the
leaders suffer from “compression”. We therefore com-
bine both methods by a smooth transition between
velocity matching close to the leaders and leader pur-
suit when further away; see bottom of Figure 2.

In order to achieve the combination of movement
with the leader and towards the leader, three public
variables are used for each leader. The leader dis-
tance is the minimum hop count to the leader. Let
pred(r) be the predecessor in a minimum-hop tree to
the leader, which can be the leader itself. The leader
velocity is the one of pred(r) for a non-leader, and
the robot’s own velocity for the leader. The leader
direction is a normalized direction vector calculated
incrementally from the direction to pred(r) as fol-
lows: Each robot takes the leader direction of its
pred(r) and merges it with the normalized direction
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Figure 3: (Left) The basic swarm with leader forces
added. (Right) Swarm with stability improvement.
Lower swarms are scaled down for better visibility.

to pred(r). If pred(r) is the leader, only the normal-
ized direction to it is used. For computing the leader
force, the leader direction is scaled to the length of
the leader velocity and then combined with a leader
distance-sensitive weighting.

For ` ∈ L, let c` : R → R2 be the force on a specific
robot and let d` : R → N be its distance to `. The
leader forces on robot r are combined as follows:

∑

`∈L
c`(r)

d`(r)
−1

∑
`′∈L d`′(r)

−1 .

Additionally we provide leaders with too few neigh-
bors with an attraction force, so they do not lose con-
nection to the swarm. This attraction spreads over
some distance, but decreases exponentially.

3.3 Stability Improvement

Near Steiner points, connections along concave swarm
boundaries may be stretched by boundary forces.
When the involved edges approach the upper bound
for communication, connections may be disrupted, to
the point where the swarm loses connectivity. By
adding a thickness-dependent compression force, we
reduce neighbor distances without influencing the
Steiner-tree shape of the swarm; in effect, this works
similar to compression stockings. In the following, we
give a heuristic for thickness computation and com-
pression. In order to let the flocking algorithm handle
this compression without destroying the regular dis-
tribution, we sketch a density distribution heuristic
later in this Section. A comparison of a swarm with
and without the stability improvement can be seen in
Figure 3.

Thickness Contraction. We define the local thick-
ness at a robot as the radius of the largest hop circle

0/2/2 0/2/20/2/20/2/2 0/2/2 0/2/2 0/2/2 0/2/2
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Figure 4: Thickness determination (b(r)/t(r)/h(r))
for a limb part. The red edges fulfill the Gabriel graph
condition. A largest hop circle is marked in blue.

containing it. A hop circle of radius h with robot c
as circle center is the set of all robots with a hop
count ≤ h to c; only robots with distance equal to h
may be on the boundary. An example is highlighted
in blue in Figure 4.

The relationship between geometric thickness and
boundary hop distance may be distorted by long con-
nections that skip over robots. This can be avoided
by only considering edges that fulfill the edge condi-
tion of the Gabriel graph, meaning that no robot is al-
lowed to be closer to the midpoint of an edge than the
robots connected by it. We denote the corresponding
reduced neighborhood of a robot r as N ′r.

The following method is a simplified implementa-
tion of the thickness metric above, which performed
well enough in simulation. It gets by with only three
public variables; all circles with its center within a
larger circle are ignored.

For this heuristic evaluation of the thickness t(r)
of a robot r, we need the hop distance b(r) from the
boundary and the circle center distance h(r). Com-
puting the hop distance to the boundary for each
robot can easily be achieved by setting b(r) to 0 for
all robots on the boundary, while all others take the
minimum of their neighbors plus one, as follows

b(r) =

{
0 r on boundary

min{b(n) + 1 | n ∈ N ′r} else

Small holes, that occur frequently but also vanish
quickly, are excluded from the boundary, otherwise
the value can become too instable. The thickness t(r)
is determined as the maximum b(r) within some range
h(r), as follows.

t(r) := max{{b(r)}∪{t(n) | n ∈ N ′r∧t(n)+λ ≥ h(n)}},

where λ ∈ N is a small constant (e.g. λ = 2) that
tackles the problem of irregular boundaries. If r is
a circle center (t(r) = b(r)), then the circle center
distance h(r) is 0. Otherwise,

h(r) := min{h(n) + 1 | n ∈ N ′r ∧ t(n) = t(r)}
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Based on this thickness t(r), the described compres-
sion force grows linearly with this t(r). It acts only
on robots of large boundaries, so that small holes are
not prevented from closing.

Density. The local density of a robot refers to the
number of neighbors in relation to its observable area.
By introducing an attraction to low and repulsion
from high local density neighbors, the overall swarm
density is maintained at a specific homogeneous level.
It is determined by divid-
ing the number of neighbors
by the roughly calculated ob-
servable area as depicted in
the figure to the right. In or-
der to avoid lumps, robots in
collision range are weighted
higher. For robots on the boundary the computation
is a bit more involved. However, further details are
omitted due to limited space.

Let ρ(r′) be the averaged local density of robot r′,
% the optimal density, and Nr the neighbors of r, then
the density distribution force for a robot r is given by

∑

n∈Nr

pr(n) ∗ φ(ρ(n)− %) with φ(x) = x3/|x|,

where pr : R → R2 is the direction from robot r to a
neighbor with the length of the distance for ρ(n) ≤ %
and of range minus distance else. We do not apply
this force to robots on the boundary.

4 Experiments

We validated our approach by conducting experi-
ments with a set of five leaders stretching out a swarm
of 400 robots until it disconnects. The performance
is measured by the length of the minimal Steiner tree
on disconnection (calculated by the Geosteiner soft-
ware [9]), divided by the theoretically maximal possi-
ble length estimated by |R′| ∗ range, where R′ are the
robots that did not fail yet. This would correspond to
an optimal but extremely fragile Steiner tree in which
any node failure disconnects the swarm. Thus, the
best possible value of 1 is completely elusive.

For comparison we tested three configurations:
Base—only the base behavior as discussed in Sec-
tion 3.1; Lead—the basic behavior enriched by leader
forces as discussed in Section 3.2; All—the final con-
figuration that also incorporates Density and Thick-
ness Contraction as presented in Section 3.3.

The experiments were carried out with 60 iterations
per simulated second, a robot diameter of 10 cm and
a range of 1.2 m. The maximal robot velocity was set
to 1 m s−1, but the leaders only moved by at most
0.25 m s−1 in order to give the swarm robots the op-
portunity to react. These parameters are chosen ar-

Failure rate Base Lead All
0 .07 .08 .09 .25 .30 .34 .28 .32 .35

5 · 10−6 .07 .08 .09 .25 .28 .32 .26 .29 .33
10−5 .06 .08 .09 .23 .28 .31 .26 .30 .33

2 · 10−5 .07 .08 .09 .22 .25 .29 .26 .30 .33

Table 1: Relative Steiner tree sizes reached by first,
second, and third quartiles. The failure rate is the
probability of each robot to die in each step of the
simulation.

bitrary but are oriented to the R-One swarm robots
of the Rice University.

For each configuration there were 100 random tri-
als on four different failure rates. The results in Ta-
ble 1 show that leader forces already produce decent
swarm behavior, with survivability four times higher
than for the base forces. Without robot losses, it
reaches around 30% of the length of the hypothetical
optimum. With robot failures, the performance gets
weaker with increasing failure probability. The vari-
ant with additional stability improvement is slightly
better without failures, but is clearly more robust
against robot losses.
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Randomized Strategy for Walking in Streets for a Simple Robot

Azadeh Tabatabaei∗ Mohammad Ghodsi†

Abstract

We consider the problem of walking in an unknown
street, for a robot that has a minimal sensing capa-
bility. The robot is equipped with a sensor that only
detects the discontinuities in depth information (gaps)
and can locate the target point as enters in its visibil-
ity region. We propose a randomized search strategy
that generates a search path for the simple robot to
reach the target t, starting from s. Even with such
a limited capability, we prove that the expected dis-
tance traveled by the robot is at most a constant times
longer than the shortest path to reach the target.

1 Introduction

Path planning is a basic problem to almost all scopes
of computer science; such as computational geometry,
online algorithms, robotics and artificial intelligence
[10]. Especially, path planning in an unknown envi-
ronment for which there is no geometric map of the
scene is interesting in many real life cases. Robot sen-
sors is the only tool for gathering information in an
unknown street. Amount of the information achieved
from the environment depends on the capability of the
robot. Due to the importance of using simple robot,
including low cost, less sensitive to failure, robust
against sensing errors and noise, many types of path
planning for simple robot have been studied [1, 3, 5].

In this paper, we consider the problem of walking a
simple robot in an unknown street. A simple polygon
P with two separated vertices s and t is called a street
if the left boundary chain Lchain and the right bound-
ary chain Rchain constructed on the polygon from s
to t are mutually weakly visible. In other words each
point on the left chain can see at least one point on
the right chain and vice versa [8], see Figure 1.

A point robot which its sensor has a minimal capa-
bility that can only detect discontinuities in depth in-
formation (gaps) and the target point t, starts search-
ing the street. The robot can locate the target as soon
as it enters in its visibility region. Also, the robot
cannot measure any angles or distances or infer its
position, see Figure 1. The goal is to reach the target
t using the information gathered through its sensor,

∗Department of Computer Engineering, Sharif University of
Technology.

†Sharif University of Technology and School of Computer
Science, Institute for Research in Fundamental Sciences (IPM).
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Figure 1: (a) A street polygon. The colored region
is the visibility polygon of the point robot q in the
street. (b) The position of discontinuities in the depth
information (gaps) reported by the sensor.

starting from s such that the traveled path by the
robot is as short as possible.

In order to evaluate the efficiency of a search strat-
egy for the robot, we use the notation of the com-
petitive analysis. The competitive analysis for a
strategy that leads the robot is the ratio of the dis-
tance traversed by the robot over the shortest dis-
tance from s to t, in the worst case. In previous re-
search, Tabatabaei and Ghodsi gave a deterministic
algorithm for the simple robot to reach the target t in
the street, starting from s with the competitive ratio
of 11. Also they showed that 9 is a lower bound for
the competitive ratio of each deterministic algorithm
[13, 14]

In this paper, we present a randomized strategy for
the simple robot to walk in the street. We show that
the worst case ratio of the expected distances traveled
by the robot to the shortest path form s to t is 6.59
which is almost twice as good as the competitive ratio
of the deterministic algorithm.

Related Works: Klein proposed the first compet-
itive algorithm for walking in streets problem for a
robot that was equipped with a 360 degrees vision
system [8]. Also, Icking et al. presented an optimal
search strategy for the problem with the competitive
factor of

√
2 [6].

The limited sensing model (gap sensor) that our
robot is equipped with, in this research, was first in-
troduced by Tovar et al. [16]. They offered Gap Nav-
igation Tree (GNT) to maintain and update the gaps
seen along a navigating path. Other researcher pre-
sented some strategies, using GNT, for exploring un-
known environments [4, 9, 11]. An optimal search

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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strategy with minimum number of turns, for the sim-
ple robot equipped with the gap sensor, is presented
in [15].

Another minimal sensing model was presented by
Suri et al. [12]. They assumed that the simple robot
can only sense the combinatorial (non-metric) prop-
erties of the environment. The robot can locate the
vertices of the polygon in its visibility region, and
can report if there is a polygonal edge between them.
Despite of the minimal ability, they showed that the
robot can accomplish many non-trivial tasks. Then,
Disser et al. empowered the robot with a compass to
solve the mapping problem in polygons with holes [2].

2 The Sensing Model and Known Properties

At the start point, the point robot reports a cyclically
ordered of discontinuities in the depth information
(gaps) in its visibility region. Each gap has a label
of L or R which displays the direction of the part of
the scene that is hidden behind the gap, see Figure 2.
Also the robot carries a pebble to mark some location
of the street. The robot can orient its heading to each
gap and moves towards the gap in an arbitrary num-
ber of steps. Also the robot can move towards the
pebble and the target as they enter in its visibility re-
gion. While the robot moves, combinatorial changes
occur in the visibility region of the robot that they
are called critical events. There are four types of crit-
ical events: appearances, disappearances, merges, and
splits of gaps. Appearance and disappearance events
occur when the robot crosses inflection rays. An ap-
peared gap, during the movement, corresponds to a
portion of the environment that was already visible,
but now is not visible. such the gaps are called prim-
itive gaps and the other gaps are non-primitive gaps.
Merge and split events occur when the robot crosses
bitangent complements, as illustrated in Figure 2.

Now, we express some primary properties of loca-
tions of gaps in the walking in streets problem, mostly
from [14]. At each point of the search path, if the tar-
get is not visible, the robot reports a set of left and
right gaps (l-gap and r-gap for abbreviation). Let gl

be the most advanced non-primitive left gap (l-gap)
and gr be the most advanced non-primitive right gap
(r-gap), see Figure 3. It is shown in [6, 14], while the
target is not visible then it is hidden behind one of the
two most advanced gaps. So, if there exist only one of
the two gaps (gr and gl) then the goal is hidden be-
hind of the gap. Thus, there is no ambiguity and the
robot moves towards the gap, see Figure 3(a). When
both of gr and gl exist, a funnel case arises. At each
funnel case there are two convex chains in front of the
robot: the left convex chain that lies on Lchain of the
street, and the right convex chain that lies on Rchain,
see Figure 3(b). Following property is an important
guideline for achieving the target.
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complement
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L
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R
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Figure 2: The dynamically changes of the gaps as the
robot walks towards a gap. The dark circle is the
location of the robot, and squares and other circles
denote primitive and non-primitive gaps respectively.
(a) Existing gaps at the start point. (b) A split event.
(c) A disappearance event. (d) An appearance event.
(e) Another split event. (f) A merge event.

Theorem 1 Shortest path from s to t lies completely
on the left convex chain, or on the right convex chain
of the funnel, at each funnel case.

At each funnel case, the chain which contains the
shortest path from s to t is called the exact chain
of the funnel.

As the robot moves in the street, the critical events
that change the structure of the robot’s visibility re-
gion may dynamically change gl and gr. Also, by
the robot movement, a funnel case may end or a new
funnel may start. We refer to the point, in which a
funnel ends or a new funnel starts, a critical point of
the funnel.

Obviously, if the robot moves towards the left/right
most advanced gap, it traces the left/right convex
chain.

The following events update the location of gl and
gr as well as a funnel situation.

1. When the robot crosses a bitangent complement
of gr/gl and another r-gap/l-gap, then gr/gl
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Figure 3: gr and gl are the most advanced gaps at the
start point s. vr and vl are the corresponding reflex
vertices. (a) There is only one most advanced gap,
at start point s. (b) Sequences of the most advanced
gaps may occur, as the robot moves. The funnel sit-
uation which ends as soon as the robot reaches each
of the critical points. Dotted chains, starting from s,
are the two convex chains of the funnel.

splits and will be replaced by the r-gap/l-gap,
(point 1 in Figure 3(b)).

2. When the robot crosses a bitangent complement
of gr/ gl and an l-gap/r-gap, then gr/gl splits
into two gaps. gl/gr will be replaced by the l-
gap/r-gap, (point 1 in Figure 4). This point is
a critical point in which a new funnel situation
starts.

3. When the robot crosses over an inflection ray,
each of gl or gr which is adjacent to the ray, dis-
appears and is eliminated, (point 2 in Figure 4).
This point is a critical point in which a funnel
situation may end.

The critical points of chains have the following prop-
erty.

Lemma 2 [14] The exact chain of the funnel can be
specified as soon as the robot reaches a critical point
of the funnel.

3 Algorithm

Now, we present the randomized strategy for search-
ing the street, from s to t. Since the target is con-
stantly behind one of the most advanced gaps, during
the searching, the location of them is maintained and
dynamically updated. There are two cases at the start
point:

• If only one of the two gaps (gr and gl) exists,
then the goal is hidden behind the gap. Thus,

there is no ambiguity and the robot moves to-
wards the gap until the target is achieved or a
funnel situation arises, see Figure 3(a).

• If there is a funnel case, the robot puts a peb-
ble to mark this point as origin. Since it is not
sure that the target is behind which of gr or
gl, it chooses a uniform random variable from
{0, 1}. If the random variable is 1(0), at each
stage i ∈ {0, 1, 2, ...}, the robot moves 2i steps
along the right (left) convex chain and returns to
the origin, then moves 2i+1 steps along the left
(right) convex chain. The robot repeats mov-
ing back and forth along the two convex chain
until a critical point of the funnel is achieved.
From Lemma 2, the robot can distinguish the
exact chain. So, after achievement of the criti-
cal point, the robot comes back to the origin and
picks the pebble up, and moves along the exact
convex chain, see Figure 4. The robot continues
to move along the exact chain until the target is
achieved or a new funnel situation arises. Note
that in a funnel case when the robot moves along
a convex chain, the dynamically changes of gl

and gr are maintained, as explained in the previ-
ous section. Furthermore, it has to maintain the
comeback path (Rg) to the origin. This path is
constructed as follows:

– When the robot crosses over an inflection
ray, a gap appears. If this gap hides the
pebble, we refer to this gap as comeback gap
(Rg), see Figure 4.

– When Rg merges with another gap, the
comeback gap (Rg) will be a child of the
gap.

1

t

2

LL

gl

gl
gr

gr

Rg

Critical point

s

Figure 4: The dotted path is the robot search path. Point
1 is a critical point in which the robot distinguish the exact
chain. Rg maintains the comeback path.
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3.1 Correctness and Analysis

Now, we show that our strategy generates a search
path for the robot to reach the target t. Also, we
show that the ratio of expected distance traversed by
the robot to the shortest path distance from s to t is
a constant number.

When the robot reports only one most advanced
gaps, the robot moves towards the gap. So, its path
coincides with the shortest path. When a funnel case
arises, assume the two convex chains in front of the
robot as a line. By our randomized strategy, the robot
achieves the critical point of the exact chain. A simi-
lar argument, that proves the competitive ratio of the
smart cow algorithm [7], can be used to show that ex-
pected distance traveled by the robot is 4.59 times as
long as the shortest path distance to the point. After
achievement of the critical point the robot returns to
the origin to pick up the pebble and moves along the
exact chain. Then the expected distances traversed
by the robot to reach the critical point and picking
up the pebble is at most 6.59 times as long as the
shortest path.

The following theorem that is an immediate conse-
quence of the above discussion is the main result of
this paper.

Theorem 3 The randomized strategy generates a
search path to achieve target t in the street, start-
ing from s, with a competitive ratio of 6.59.

4 Conclusion

In this paper we proposed a randomized search strat-
egy for walking in streets problem for a point robot
that has a minimal sensing capability. The robot can
only detect the gaps in the environment and the tar-
get. Also the robot has access to a pebble as a marker.
Our randomized search strategy generates a search
path for the robot with a competitive ratio of 6.59.
This competitive ratio is almost twice as good as the
competitive ratio of the previous deterministic algo-
rithm.
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Orienting triangulations∗

Boris Albar† Daniel Gonçalves‡ Kolja Knauer§

Abstract

We prove that any triangulation of a surface different
from the sphere and the projective plane admits an
orientation of its 1-skeleton without sinks such that
every vertex has outdegree divisible by three. This
confirms a conjecture of Barát and Thomassen (J. of
Graph Theory (2006)) and is a step towards a gener-
alization of Schnyder woods to higher genus surfaces.

1 Introduction

The notation and results we use for graphs and sur-
faces can be found in [9]. We start with some basic
definitions:

A map (or 2-cell embedding) of a multigraph into a
surface, is an embedding such that deleting the graph
from the surface leaves a collection of open disks,
called the faces of the map. A triangulation is a
map of a simple graph (i.e. without loops or multiple
edges) where every face is triangular (i.e. incident to
three edges). A fundamental result in the topology
of surfaces is that every surface admits a map. The
(orientable) genus of a map on an orientable surface
is 1

2 (2−n+m− f) and the (non-orientable) genus of
a map on a non-orientable surface is 2 − n + m − f ,
where n,m, f denote the number of vertices, edges,
and faces of the map, respectively. The Euler genus
k of a map is 2 − n + m − f , i.e., the non-orientable
genus or twice the orientable genus. All the maps on
a fixed surface have the same genus, which justifies to
define the (Euler) genus of a surface as the (Euler)
genus of any of the maps it admits. In [2] Barát and
Thomassen conjectured the following:

Conjecture 1 Let T be a triangulation of a surface
of Euler genus k ≥ 2. Then T has an orientation of
its edges such that each outdegree is at least 3, and
divisible by 3.

One easily computes that the number of edges m of a
triangulation T of a surface of Euler genus k is 3n−6+
3k. So while triangulations of Euler genus less than
2 simply have too few edges to satisfy the conjecture,
in [2] the conjecture is proved for the case k = 2,

∗This work was supported by the project EGOS, ANR-12-
JS02-002-01
†LIRMM, CNRS & Université Montpellier 2
‡LIRMM, CNRS & Université Montpellier 2
§LIF, Université Aix-Marseille

i.e., the torus and the Klein bottle. Moreover, they
show that any triangulation T of a surface has an
orientation such that each outdegree is divisible by 3,
i.e, in order to prove the full conjecture they miss the
property that there are no sinks.

Barát and Thomassen’s conjecture was originally
motivated in the context of claw-decompositions of
graphs, since given an orientation with the claimed
properties the outgoing edges of each vertex can be
divided into claws (i.e. copies ofK1,3), such that every
vertex is the center of at least one claw.

Another motivation for this conjecture is, that it
can be seen as a step towards the generalization of
planar Schnyder woods to higher genus surfaces. A
Schnyder wood [10] of a planar triangulation is an
orientation and a {0, 1, 2}-coloring of the inner edges
satisfying the following local rule on every inner ver-
tex v: going counterclockwise around v one succes-
sively crosses an outgoing 0-arc, possibly some incom-
ing 2-arcs, an outgoing 1-arc, possibly some incoming
0-arcs, an outgoing 2-arc, and possibly some incoming
1-arcs until coming back to the outgoing 0-arc.

Schnyder woods are one of the main tools in the
area of planar graph representations and Graph Draw-
ing. They provide a machinery to construct space-
efficient straight-line drawings [11, 6], representations
by touching T shapes [5], they yield a characterization
of planar graphs via the dimension of their vertex-
edge incidence poset [10, 6], and are used to encode
triangulations efficiently [3]. In particular, the local
rule implies that every Schnyder wood gives an orien-
tation of the inner edges such that every inner vertex
has outdegree 3 and the outer vertices are sources
with respect to inner edges. Indeed, this is a one-
to-one correspondance between Schnyder woods and
orientations of this kind.

When generalizing Schnyder woods to higher genus
surfaces one has to choose which of the properties
of planar Schnyder woods are desired to be car-
ried over to the more general situation. Examples
are: the efficient encoding of triangulations on arbi-
trary surfaces [4] and the relation to orthogonal sur-
faces and small grid drawings for toroidal triangula-
tions [8], which lead to different definitions of gener-
alized Schnyder woods. In [8], the generalized Schny-
der woods indeed satisfy the local rule with respect
to all edges and vertices of a toroidal triangulation
and henceforth lead to orientations having outdegree
3 at every vertex. An interesting open problem is to
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preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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generalize the local rule to triangulations with higher
Euler genus in such a way that for some vertices the
sequence mentioned in the local rule occurs several
times around the vertex. Here, the mere existence of
such objects is an open question. Clearly, such a gen-
eralized Schnyder wood would yield an orientation as
claimed by the conjecture. Thus, proving the conjec-
ture of Barát and Thomassen is a first step into that
direction. More towards generalizations of Schnyder
woods can be found in [7]. A full version of the present
paper is on the arXiv [1].

2 Preliminaries

A map M on a surface S is characterized by a triple
(V (M), E(M), F (M)), formed by the vertex, edge
and face sets of M . In the following we will restrict to
triangulations T = (V (T ), E(T ), F (T )), i.e. the pair
(V (T ), E(T )) is a simple embedded graph such that
every face is incident to exactly three edges.

A submap M ′ of T , is a triplet (V ′, E′, F ′) where
V ′ ⊆ V (T ), E′ ⊆ E(T ) and F ′ ⊆ F (T ). Note that
a submap is not necessarily a map. A submap M ′ =
(V ′, E′, F ′) is closed if uv ∈ E′ implies {u, v} ⊆ V ′

and if f ∈ F ′ implies e ∈ E′ for any edge e incident
to f . The closure cl(M ′) of a submap M ′ (of T ) is
the smallest closed submap of T containing M ′. The
boundary ∂M ′ of a submap M ′ is the set of edges in
cl(M ′) that are incident to at most one face in M ′.

In a submap M ′ of T a (boundary) angle
ê0vet at vertex v is an alternating sequence
(e0, f1, e1, . . . , ft, et), for some t ≥ 1, of edges and
faces incident to v (in T ) and such that:

- the faces fi are mutually different, for 1 ≤ i ≤ t,

- each face fi, for 1 ≤ i ≤ t, is incident to edges
ei−1 and ei,

- both edges e0 and et belong to cl(M ′),

- but none of the remaining edges, ei for 0 < i < t,
belong to cl(M ′), nor any faces fi, for 0 < i ≤ t.

In the following, a disk is a submap M ′ of T if it
is homeomorphic to an (open or closed) topological
disk.

Given a triangulation T and a set of vertices X ⊆
V (T ), the induced submap T [X] is the submap with
vertex set X, edge set {uv ∈ E(T ) | u ∈ X and v ∈
X}, and face set {uvw ∈ F (T ) | u ∈ X, v ∈
X, and w ∈ X}.

Given an induced submap M ′ = T [X] of a tri-
angulation T , and any occurrence of an edge ab in
∂M ′ (corresponding to angles â and b̂) there exists a
unique vertex c such that there is a face abc in T \M ′
that belongs to both angles â and b̂. For any such
vertex c (and ab ∈ ∂M ′) we define the operation of
stacking c on M ′, as adding c to X, i.e., going from

M ′ = T [X] to M ′′ = T [X + c]. In such stacking, let
M ′ ∩ cl(M ′′ \M ′) be the neighborhood of c in M ′. As
T is simple, note that this neighborhood is either a
cycle or a union of paths, one of which with at least
one edge (the edge allowing the stacking), and let us
respectively call them the neighboring cycle and the
neighboring paths of c in M ′ (see Figure 1).

c

c

a b a
b

c

a

b

u
v
w

u

v

w x u

v

w

y

Figure 1: Different scenarios of stacking c to M ′. Left:
one neighboring path P1 = (u, a, b, v, w). Middle:
three neighboring paths P1 = (u, a, b, v), P2 = (w, x),
P3 = (y). Right: A boundary cycle C = (u, v, w, b, a).

3 Proof of Conjecture 1

Let us consider for contradiction a minimal counterex-
ample T . We first provide an outline of the proof.

3.1 Outline

We first prove that one can partition the edges of the
triangulation T into the following graphs:

• The initial graph I, which is an induced submap
containing a non-contractible cycle. Further-
more, I contains an edge e∗ = {u, v} such that
the map I\e∗ is a disk D whose underlying graph
is a maximal outerplanar graph with only two de-
gree two vertices, u and v (see Figure 2).

e∗
u

v

Figure 2: Example of a submap I.

• The correction graph B (with blue edges in the
figures), which is oriented acyclically in such a
way that each vertex of V (T )\V (I) has outdegree
2 in B, while the other vertices have outdegree 0,

• The last correction path G (with green edges in
the figures), which is a {u, v}-path.
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• The non-zero graph R (with red edges in the fig-
ures), which is oriented in such a way that all ver-
tices in (V (T ) \ V (G))∪{u, v} have out-degree at
least 1 in R.

Due to space restrictions, the existence of the initial
graph I will not be proven here, we refer to [1] for a
proof of this fact. In Section 3.2 we sketch the proof
of the existence of the graphs B, G and R (with the
mentioned orientations).

Finally, the edges of I, B and G are (re)oriented,
to obtain the desired orientation. The orientation of
edges in R does not change, as they ensure that many
vertices (all vertices of T except the interior vertices
of the path G) have non-zero outdegree. The {u, v}-
path G is either oriented from u to v or from v to
u, but this will be decided later. However in both
cases its interior vertices are ensured to have non-
zero outdegree. Hence all vertices are ensured to have
non-zero outdegree and it remains to prove that they
have outdegree divisible by 3.

We start in Section 3.3 by reorienting the B-arcs
in order to ensure that vertices of V (T ) \ V (I) have
outdegree divisible by 3 (this is the same approach as
the one used in [2]). In the last step, in Section 3.4,
we choose the orientation of the {u, v}-path G, and
we orient I in order to achieve the desired orientation.

3.2 Existence of B, G, and R

We start from I and we incrementally conquer the
whole triangulation T by stacking the vertices one by
one (this is inspired by [4]). At each step, we will
assign the newly explored edges to B, G or R, and
we will orient those assigned to B or R. At each step
the explored part is a submap of T induced by some
vertex set X. The explored part is hence the submap
denoted T [X] with boundary ∂T [X]. The unexplored
part is the submap T \ T [X], and it may consist of
several components.

At a given step of this exploration, the graph G
may not be an {u, v}-path yet. In such a case, the
graph G will consist of two separate paths Gu and Gv,
respectively going from u to u′, and from v to v′, for
some vertices u′ and v′ on ∂T [X]. Here the vertices u′

and v′ may respectively coincide with vertices u and
v, if Gu or Gv is a trivial path on just one vertex.

During the exploration we maintain the following
invariants:

(I) The graphs I, B, G, and R partition the edges
of T [X].

(II) All interior vertices of T [X] have at least one out-
going R-arc, or two incident G-edges.

(III) The graph B is acyclically oriented in such a way
that the vertices of I have outdegree 0, while the
other vertices of T [X] have outdegree 2.

Furthermore, to help us in properly finishing the con-
struction of the graphs B, G and R in the further
steps, we introduce the notion of requests on the an-
gles of ∂T [X]. Informally, a G-request (resp. an R-
request) for an angle â means that in a further step
an edge inside this angle will be added in G (resp. in
R and oriented from a to the other end). Every an-
gle has at most one request, and an angle having no
request is called free.

(IV) Every vertex of (∂T [X] \ {u′, v′})∪{u, v} having
(still) no outgoing R-arc, has an incident angle
with an R-request.

(V) If G is not a {u, v}-path (yet), u′ and v′, have
one incident angle each, say û′ and v̂′, that are
consecutive on ∂T [X], and that have a G-request.

(VI) If there is an unexplored disk D′, i.e. a compo-
nent of the unexplored part that is a disk, then
there are at least three free angles (of ∂T [X])
around D′.

This exploration starts with T [X] = I. In this case
as all the edges of T [X] are in I and as there are no
interior vertices yet, (I), (II) and (III) are trivially
satisfied. Since the Euler genus of T is at least 2
there is no unexplored disk, hence (VI) is satisfied.
Since e∗ = uv appears twice in ∂T [X], the vertices
u, v appear twice consecutively in ∂T [X]. To achieve
(V) and (IV), we assign requests to the vertices of I
as in Figure 3.

e∗
u

v

Figure 3: Assigning requests to I in order to satisfy
the invariants.

For the rest of the construction in each step we en-
large the explored map T [X] by stacking a vertex x
carefully choosen to an edge e ∈ ∂T [X]. We then
partition the edges incidents to x into the different
graphs B, G and R and update the requests of the
vertices adjacent to x in a way to satisfy the different
invariants and the previous requests of the vertices.
We show that this is always possible by studying all
the possible configurations (see Figure 4 for an exam-
ple where x has only one neighboring path). All the
others cases are omitted due to space restrictions.
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e

x

e

x

e

xu′ u′u′

ps ps ps

Figure 4: Case where there is only one G-request (on
û′) and where p̂s has an R-request. The 3 subcases
from left to right correspond to the cases where there
is 0, 1 and 2 free angles in the neighboring path re-
spectively.

3.3 Reorienting B

Given a partial orientation O of T we define the de-
mand of a vertex v as demO(v) := −δ+|O(v) mod 3,

where δ+|O(v) denotes the outdegree of v with respect

to O. We want to find an orientation of T with all
demands 0.

Recall we will not modify the orientation on R,
which guarantees that all vertices in (V (T ) \ V (G))∪
{u, v} have non-zero outdegree. Furthermore, as G
will be oriented either entirely forward or backwards,
all its interior vertices will have non-zero outdegree.
Hence every vertex of T [X] has non-zero outdegree.
Suppose that G is entirely oriented forward.

Now we linearly order vertices in V (T ) \ V (I) =
(v1, . . . , v`) such that with respect to B every vertex
has its two outgoing B-neighbors among its predeces-
sors and I. Denote by Bi the subgraph of B induced
by the arcs leaving vi, . . . , v` (before the reorienting).
We process V (T ) \ V (I) from the last to the first ele-
ment. At a given vertex vi we look at demG∪R∪Bi(vi)
and reorient the two originally outgoing B-arcs of vi
in such a way that afterwards demG∪R∪Bi

(vi) = 0
(i.e. δ+|G∪R∪Bi

(vi) ≡ 0 mod 3). As these B-arcs were

heading at I or at a predecessor, the demand on the
vertices vj , with j > i, is not modified and hence
remains 0.

3.4 Orienting G and I

Denote by O the partial orientation of T obtained
after 3.3. Pick an orientation of G (either all forward
or all backward) and of e∗ = uv such that for the
resulting partial orientation O′ we have demO′(v) ≡ 1
mod 3.

Now, take the triangle ∆ of I containing v. Since
D = I \ e∗ is a maximal outerplanar graph with only
two degree two vertices, D can be peeled by removing
degree two vertices until reaching ∆. When a ver-
tex x is removed orient its two incident edges so that
demO′(x) = 0 (as for B-arcs). We obtain a partial
orientation O′′, such that all vertices except the ones
of ∆ have non-zero outdegree divisible by 3.

Since the number of edges of T , and the number
of edges of ∆ are divisible by 3, the number of edges

of T \ ∆ is divisible by 3. As this number equals
the sum of the outdegrees in O′′, and as every ver-
tex out of ∆ has outdegree divisible by 3, then the
outdegree of ∆’s vertices sum up to a multiple of
3. Hence their demands sum up to 0, 3 or 6. As
demO′′(v) = demO′(v) = 1, the demands of the other
two vertices of ∆ are either both 1, or 0 and 2. It is
easy to see that in either case ∆ can be oriented to
satisfy all three demands.

References

[1] B. Albar, D. Gonçalves, and K. Knauer,
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Lattice 3-polytopes with six lattice points∗

Mónica Blanco Francisco Santos

Abstract

We completely enumerate lattice 3-polytopes of width
larger than one and with exactly 6 lattice points:
There are 74 of width 2, two of width 3, and none
of larger width.

According to the number of interior points these 76
polytopes divide into 23 tetrahedra with two interior
points, 49 polytopes with one interior point and only
4 hollow polytopes (two tetrahedra, one quadrangular
pyramid and one triangular bipyramid).

1 Introduction

A lattice polytope is the convex hull of a finite set
of points in Zd (or in a d-dimensional lattice). A
polytope is d-dimensional if it contains d+ 1 affinely
independent points. We call size of P its number
#(P ∩ Zd) of lattice points and volume of P its vol-
ume normalized to the lattice (that is, d + 1 points
form a simplex of volume one if and only if they are
an affine lattice basis). More formally, let pi ∈ Zd:

vol(conv{p1, . . . , pd+1}) :=

∣∣∣∣det

(
1 . . . 1
p1 . . . pd+1

)∣∣∣∣

The width of a lattice polytope is the minimum of
maxx∈P f(x) − minx∈P f(x), over all possible (non-
constant) choices of a linear functional f : Rd → R
with f(Zd) ⊂ Z. In other words, the width of P is the
minimum lattice distance between two parallel lattice
hyperplanes that enclose P . In particular, P has width
one if its vertices lie in two parallel and consecutive
lattice hyperplanes.

Two lattice polytopes P andQ are said Z-equivalent
or unimodularly equivalent if there is an affine uni-
modular transformation t : Rd → Rd that preserves
the lattice and with t(P ) = Q. We call such a trans-
formation a Z-equivalence. Volume, width, and size
are obviously invariant modulo Z-equivalence.

In dimension 2, once we fix an n ∈ N there
are finitely many Z-equivalence classes of lattice 2-
polytopes of size n. In dimension 3, in contrast, there
are infinitely many classes for each size n ≥ 4. Still,
combining previous results it is easy to show that:

∗This work is an extended abstract of [3], and is sup-
ported by grants MTM2011-22792 (both authors) and BES-
2012-058920 (M. Blanco) of the Spanish Ministry of Science.

Department of Mathematics, Statistics and Computation,
University of Cantabria, 39005 Santander, Spain

Theorem 1 ([2]) For each n ≥ 4, there are finitely
many lattice 3-polytopes of width greater than one
and size n.

So, it makes sense to classify separately, for each
n, the 3-polytopes of width one and those of larger
width. Those of width one are infinitely many, but
easy to describe. Of larger width there is none up
to n = 4 ([9]) and there are exactly 9 for n = 5,
all of width two ([2]). Here we completely classify 3-
polytopes of size n = 6 and width > 1, showing that
there are exactly 74 of width two, two of width three,
and none of larger width (see precise results below).

Our motivation comes partially from the notion of
distinct pair-sums lattice polytopes [4, 7] (or dps poly-
topes, for short). A lattice polytope P is called dps
if all the pairwise sums a+ b, with a, b ∈ P ∩ Zd, are
distinct. Equivalently, if P ∩Zd contains neither three
collinear points nor the vertices of a non degenerate
parallelogram ([4]). They are also the lattice poly-
topes of Minkowski length one, in the sense of [1].

An important fact is that dps d-polytopes have size
at most 2d ([4]). Hence, to classify all dps 3-polytopes,
it would be enough to continue the work in this paper
to a classification of sizes 7 and 8.

Our main result in this paper can be summarized
as follows:

Theorem 2 There are exactly 76 3-polytopes of size
6 and width > 1. 74 of them have width 2 and two
have width 3. 44 and 1 of those, respectively, are dps.

The volume vector (see definition in Section 2.1)
and the width of each of these 76 polytopes is given
in Tables 4 and 5. Different sections in the tables
correspond to the presence or not of certain copla-
narities (details in Section 2), as summarized in Ta-
ble 1. Table 2 classifies the 76 polytopes according to
the number of vertices and interior points. Following
somehow established terminology we call a polytope
clean if all its boundary lattice points are vertices,
hollow if it has no interior lattice points, canonical if
it has exactly one interior point and terminal if it is
canonical and clean. In both tables, x+ 1 means that
x polytopes have width two and one has width three.

Emptiness in the last line of the tables follows from
the following result that Scarf attributes to Howe:

Theorem 3 ([8, Thm. 1.3]) If all lattice points of
a lattice 3-polytope are vertices then it has width 1.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Description # polys. dps

∃ 5 coplanar points 2 0

∃ (3, 1) coplanarity, no 5 coplanar 20 + 1 13

∃ (2, 2) coplanarity, none of above 4 0

∃ (2, 1) coplanarity, none of above 17 0

No coplanarity, 1 interior point 20 20

No coplanarity, 2 interior points 11 + 1 11 + 1

No coplanarity, no interior points 0 0

Table 1: Number of lattice 3-polytopes of size 6 and width
> 1 according to coplanarities present in them.

#ver.
#int.
pts.

Description # polys. dps

4
2 clean tetrahedra 22 + 1 16 + 1
1 canonical tetrahedra 10 + 1 3
0 hollow tetrahedra 2 0

5
1

terminal quad. pyramid 3 0
terminal tri. bipyramid 35 24

0
hollow quad. pyramid 1 0
hollow tri. bipyramid 1 1

6 0 clean & hollow 0 0

Table 2: Number of lattice 3-polytopes of size 6 and
width > 1 according to the number of vertices and in-
terior points.

Let us remark that clean tetrahedra and canonical
3-polytopes were previously classified:

• Kasprzyk has classified all canonical 3-polytopes
([6]). There are 674, 688 of them, with their number
of boundary lattice points going up to 38.

• Curcic classified clean tetrahedra with up to 35 in-
terior points ([5]).

2 Preliminaries

2.1 Volume vectors and oriented matroids

Since Z-equivalence preserves volume, the following
volume vector is invariant under it:

Definition 1 Let A = {p1, p2, . . . , pn}, with n ≥ d+
1, be a set of lattice points in Zd. The volume vector
of A is the vector w = (wi1...id+1

)1≤i1<···<id+1≤n in

Z( n
d+1), where

wi1...id+1
:= det

(
1 . . . 1
pi1 . . . pid+1

)

The definition implicitly assumes a specific order-
ing of the n points in A. For six points {p1, . . . , p6}
we always order the entries of the volume vector lex-
icographically as:

w = (w1234, w1235, w1236, w1245, w1246,

w1256, w1345, w1346, w1356, w1456,

w2345, w2346, w2356, w2456, w3456)

Theorem 4 ([2]) Let A and B be d-dimensional
subsets of Zd with the same number n of points and
suppose they have the same volume vector (wI)I∈( [n]

d+1)
with respect to a given ordering. Then:

1. There is a unique unimodular affine map t : Rd →
Rd with t(A) = B (respecting the order of points).

2. If gcd
I∈( [n]

d+1)
(wI) = 1, then t has integer coeffi-

cients, so it is a Z-equivalence between A and B.

That is: when its gcd equals 1, the volume vector
is a complete invariant for Z-equivalence.

(In particular, the volume vectors in Tables 4 and 5
are enough to recover representatives for each class,
except in the five cases with gcd different from 1. Rep-
resentatives of all classes can be found in [3]).

Observation 1 The volume vector of d + 2 points
{p1, . . . , pd+2} that affinely span Rd encodes the
unique (modulo a scalar factor) affine dependence
among them: let Ik = {1, . . . , d+ 2} \ {k}
d+2∑

k=1

(−1)k−1 · wIk · pk = 0,

d+2∑

k=1

(−1)k−1 · wIk = 0

Remember that the points with non-zero coefficient
in this dependence form a circuit, whose signature is
the pair (i, j) if this dependence has i positive and j
negative coefficients. We call signature of the d + 2
points the signature of this circuit.

In particular, the oriented matroid or order type
of any point set A is encoded by the (signs in) the
volume vector of A.

To classify lattice polytopes of size six we first clas-
sify the possible oriented matroids corresponding to
an affine point configuration with 6 elements in di-
mension 3; that is, oriented matroids of rank four
with six elements that are acyclic (i.e., without pos-
itive circuits), and that do not have any parallel ele-
ments (circuits of signature (1, 1)). These are all rep-
resentable, and there are 55 of them (see [3, Section
2.2]). A posteriori, it turns out that only 22 of them
can be realized by the six lattice points in a lattice
3-polytope of size six.

2.2 Polytopes with 4 or 5 lattice points

We repeatedly use the classification of lattice 3-
polytopes of size 4 and 5. Those of size four, or empty
tetrahedra, were classified 50 years ago:

Theorem 5 (White [9]) Every empty lattice tetra-
hedron is Z-equivalent to the following T (p, q), for
some q ∈ N and p ∈ {0, q − 1} with gcd(p, q) = 1:

T (p, q) = conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}
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Moreover: (i) q = volT (p, q) and (ii) T (p, q) is equiv-
alent to T (p′, q) if and only if p′ = ±p±1 (mod q).

Table 3 shows the full classification of 3-polytopes
of size five, obtained in [2]. The polytopes are grouped
according to the signature of their five lattice points.
The five possible signatures are (2, 1), (2, 2), (3, 2),
(3, 1) and (4, 1). We include the volume vector and
width of each equivalence class. For convenience (see
Observation 1), the volume vectors are written in the
form w = (w2345, −w1345, w1245, −w1235, w1234).
Representatives of all classes can be found in [2].

Signature Volume vector Width
(2, 2) (−1, 1, 1,−1, 0) 1

(2, 1) (−2q, q, 0, q, 0),
0 ≤ p ≤ q

2
,

gcd(p, q) = 1
1

(3, 2)* (−a− b, a, b, 1,−1),
0 < a ≤ b,

gcd(a, b) = 1
1

(3, 1)*
(−3, 1, 1, 1, 0)
(−9, 3, 3, 3, 0)

1
2

(−4, 1, 1, 1, 1) 2
(−5, 1, 1, 1, 2) 2
(−7, 1, 1, 2, 3) 2

(4, 1)* (−11, 1, 3, 2, 5) 2
(−13, 3, 4, 1, 5) 2
(−17, 3, 5, 2, 7) 2
(−19, 5, 4, 3, 7) 2
(−20, 5, 5, 5, 5) 2

Table 3: Complete classification of lattice 3-polytopes of
size 5. Those marked with an * are dps

3 Overview of the classification scheme

The proof of the classification involves a quite long
case study. Let us here discuss the main ideas used in
it. Let A ⊂ Z3 consist of six points, and assume that
conv(A) ⊂ R3 has size six and width greater than one.
Then one of the following things occurs:

1. A contains 5 coplanar points. Then A consists of
one of the six polygons of size five, plus an extra
point at lattice distance at least two from it. It is
not hard to show that only two of these six poly-
gons allow this sixth point to be placed adding no
additional lattice points in conv(A).

2. A contains a coplanarity of signature (3, 1) in a cer-
tain plane H (and no five coplanar points). This
case is treated separately depending on whether the
other two points of A lie in opposite or the same
side of H. If they lie in opposite sides, then they
are both at distance 1 or 3 of H, by the classifica-
tion of size five. If they lie on the same side, then
either they are both vertices of conv(A) (and lie at
distance 1 or 3) or one is an interior point (at dis-
tance 1 or 3 from H) and the other is a vertex. In
the cases where both are guaranteed to be at dis-
tance 1 or 3 we use what we call the parallel-planes
method and when one is in the interior we use the
(4, 1)-extension method (see details below).

3. A contains a coplanarity of signature (2, 2) (and
none of the above). This is treated in much the
same way as the (3, 1) case, except things are now
simpler because every time we said “distance 1 or
3” in the previous paragraph we can now say “dis-
tance 1”.

4. All coplanarities in A come from collinearities of
signature (2, 1). We first show that the (2, 1)
collinearity must be unique (two of them would
produce either width one or 5 coplanar points) and
that removing from A one or the other extremal
collinear points we get a configuration of signature
(4, 1) and size 5. Once we have this we can use the
(4, 1)-extension method.

5. A is in general position (no coplanarities). A must
have interior points, since otherwise it has width
one by Theorem 3. There exist exactly two oriented
matroids with this properties. It turns out that
both oriented matroids have the following useful
property: there are two vertices pi and pj of A
such that both A\{pi} and A\{pj} have signature
(4, 1). Configurations like these of size 6 can all
be obtained by gluing two configurations of size 5
and signature (4, 1) along four points. There are
only eight of these configurations that we need to
consider (see Table 3) and (at most)

((
8
2

)
+ 8
)
×42×

4! possible ways to glue them, which we check one
by one via computer routines written in MATLAB.

Let us explain the parallel planes and (4, 1)-
extension methods mentioned above:

• We use the parallel-planes method when we can
guarantee that A is contained in three parallel
planes H1, H2 and H3 (not necessarily consecutive)
and we know (or pose without loss of generality) the
coordinates of all points but one. We look at what
conditions must the coordinates of the sixth point
satisfy for conv(A) not to have extra lattice points
in H2. This is a 2-dimensional problem that can
be solved graphically. This gives us a finite (and
small) list of possible positions for the unknown
point, and it only remains to check that the size of
conv(A) is indeed 6.

• We use the (4, 1)-extension method when we know
that there is a vertex p in A such that A \ {p}
has signature (4, 1) and, moreover, we know an ex-
pression of p as an affine combination of the other
points. This happens when p is part of one of these
relations: 3pi = pj + pk + pl, pi + pj = pk + pl or
2pi = pj + pk. We go through the 8 × 4! possible
ways to map A \ {p} to one of the eight configu-
rations of signature (4, 1) from Table 3, compute
the corresponding p, and check whether the convex
hull of the result has size six. This is done via some
computer routines written in MATLAB.
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We now list all the 3-polytopes of size six and width
larger than one. They are contained in Tables 4 and 5,
where we give, for each of them, the volume vector and
the width. Configurations between horizontal lines
correspond to the same oriented matroid. Dps ones
are marked with an asterisk sign next to the width.

Volume vector Width
Polytopes containing 5 coplanar points

0 0 2 0 0 4 0 2 0 −4 0 4 −2 −8 −2 2
0 0 2 0 4 4 0 2 0 −4 0 0 −2 −4 −2 2

Polytopes containing a (3, 1) coplanarity
(but no 5 coplanar points)

0 1 −1 −1 1 −2 1 −1 0 2 3 −3 0 6 0 2
0 1 −1 −1 1 −1 1 −1 1 0 3 −3 0 3 −3 2
0 1 −1 −1 1 0 1 −1 0 0 3 −3 −2 2 −2 2
0 3 −3 −3 3 0 3 −3 0 0 9 −9 −6 6 −6 2
0 1 −1 −1 1 −4 1 −1 1 3 3 −3 3 9 0 2∗
0 1 −1 −1 1 −3 1 −1 0 3 3 −3 1 8 1 2∗
0 3 −3 −3 3 −9 3 −3 0 9 9 −9 3 24 3 2∗
0 1 −1 −1 1 −1 1 −1 0 1 3 −3 −1 4 −1 2
0 1 −1 −1 1 −5 1 −1 1 4 3 −3 4 11 1 2∗
0 1 −1 −1 1 −6 1 −1 1 5 3 −3 5 13 2 2∗
0 1 −3 −1 3 −8 1 −3 1 7 3 −9 5 19 2 2∗
0 1 −3 −1 3 −2 1 −3 1 1 3 −9 −1 7 −4 2∗
0 1 −1 −1 1 −2 1 −1 1 1 3 −3 1 5 −2 2∗
0 1 −1 −1 1 −3 1 −1 1 2 3 −3 2 7 −1 2∗
0 1 −3 −1 3 −5 1 −3 1 4 3 −9 2 13 −1 2∗
0 1 2 −1 −2 0 1 2 −1 1 3 6 0 0 3 2
0 1 2 −1 −2 0 1 2 0 0 3 6 1 −1 1 2
0 3 6 −3 −6 0 3 6 0 0 9 18 3 −3 3 3
0 1 5 −1 −5 1 1 5 −2 1 3 15 1 −4 7 2∗
0 1 7 −1 −7 1 1 7 −2 1 3 21 3 −6 9 2∗
0 1 3 −1 −3 −2 1 3 1 1 3 9 5 1 2 2∗

Polytopes containing a (2, 2) coplanarity
(but none of the above)

0 1 −1 1 −1 −4 −1 1 3 −1 −1 1 5 1 −2 2
0 1 −1 1 −1 −5 −1 1 4 −1 −1 1 7 2 −3 2

0 1 5 1 5 1 −1 −5 −2 −1 −1 −5 1 2 −3 2
0 1 7 1 7 2 −1 −7 −3 −1 −1 −7 1 3 −4 2

Polytopes containing a (2, 1) coplanarity
(but none of the above)

1 −1 −2 1 2 0 −1 −2 0 0 −4 −7 −1 1 −1 2
1 −2 −4 1 2 0 −1 −2 0 0 −5 −9 −2 1 −1 2
2 −1 −2 1 2 0 −1 −2 0 0 −5 −8 −1 1 −1 2
1 −3 −6 2 4 0 −1 −2 0 0 −7 −13 −3 2 −1 2
3 −2 −4 1 2 0 −1 −2 0 0 −7 −11 −2 1 −1 2
5 −3 −6 2 4 0 −1 −2 0 0 −11 −17 −3 2 −1 2
1 −1 1 1 −1 0 −1 1 0 0 −4 2 2 −2 2 2
1 −2 2 1 −1 0 −1 1 0 0 −5 3 4 −2 2 2
2 −1 1 1 −1 0 −1 1 0 0 −5 1 2 −2 2 2
1 −3 3 2 −2 0 −1 1 0 0 −7 5 6 −4 2 2
3 −2 2 1 −1 0 −1 1 0 0 −7 1 4 −2 2 2
5 −3 3 2 −2 0 −1 1 0 0 −11 1 6 −4 2 2
1 −1 −3 1 2 1 −1 −2 −1 0 −4 −8 −4 0 0 2
1 −1 −3 2 4 2 −1 −2 −1 0 −5 −10 −5 0 0 2
2 −1 −4 1 2 1 −1 −2 −1 0 −5 −10 −5 0 0 2
2 −1 −4 3 6 3 −1 −2 −1 0 −7 −14 −7 0 0 2
3 −1 −5 2 4 2 −1 −2 −1 0 −7 −14 −7 0 0 2

Table 4: Lattice 3-polytopes of size 6 and width > 1 (I)
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Automatic Proofs for Formulae Enumerating Proper Polycubes

Gill Barequet∗ Mira Shalah∗

Abstract

In this paper we develop a general framework for
computing formulae enumerating polycubes of size
n which are proper in n−k dimensions (i.e., span-
ning all n−k dimensions), for a fixed value of k.
(Such formulae are central in the literature of sta-
tistical physics in the study of percolation processes
and collapse of branched polymers.) We re-affirm the
already-proven formulae for k ≤ 3, and prove rigor-
ously, for the first time, that the number of poly-
cubes of size n that are proper in n−4 dimensions
is 2n−7nn−9(n− 4)(8n8 − 128n7 + 828n6 − 2930n5 +
7404n4− 17523n3 + 41527n2− 114302n+ 204960)/6.

1 Introduction

A d-dimensional polycube of size n is a connected
set of n cubes in d dimensions, where connectivity
is through (d−1)-dimensional faces. Two fixed poly-
cubes are considered the same if one can be obtained
by a translation of the other. A polycube is said to
be proper in d dimensions if the convex hull of the
centers of its cubes is d-dimensional. Following Lun-
non [7], we let DX(n, d) denote the number of fixed
polycubes of size n that are proper in d dimensions.
Similarly, we denote by DT(n, d) the number of tree
polycubes of size n which are proper in d dimensions.

Enumeration of polycubes and computing their
asymptotic growth rate are important problems in
combinatorics and discrete geometry, originating in
statistical physics [4]. While in the mathematical lit-
erature these objects are called polycubes (polyomi-
noes in 2D), they are usually referred to as lattice
animals in the literature of statistical physics, where
they play a fundamental role in the analysis of per-
colation processes and collapse of branched polymers.
To-date, no formula is known for Ad(n), the num-
ber of fixed polycubes of size n in d dimensions, for
any fixed value of d, let alone in the general case.
The main interest in DX stems from the formula
Ad(n) =

∑d
i=0

(
d
i

)
DX(n, i), given originally by Lun-

non [7]. In a matrix listing the values of DX, the
top-right triangular half and the main diagonal con-
tain only 0s. This gives rise to the question of whether
a pattern can be found in the sequences DX(n, n−k),
where k < n is the ordinal number of the diagonal.

∗Dept. of Computer Science, The Technion, Haifa, Israel.
E-mail: {barequet,mshalah}@cs.technion.ac.il

Klarner [5] showed in a seminal work the existence
of λ2 = limn→∞ n

√
A2(n). Much later Madras [9]

proved the convergence of the sequence (A2(n +
1)/A2(n))∞n=1 to λ2 (and similarly in any fixed dimen-
sion d). Thus, λ2 is the growth rate limit of polyomi-
noes. Its exact value has remained elusive till these
days. The currently best known lower and upper
bounds on λ2 are roughly 4.0025 [2] and 4.6496 [6],
respectively. Significant progress in estimating λd has
been obtained in statistical physics, although the com-
putations usually relied on unproven assumptions and
on formulae for DX(n, n− k) interpolated empirically
from known values of Ad(n). Peard and Gaunt [11]
predicted that for k > 1, the diagonal formula
DX(n, n − k) has the pattern 2n−2k+1nn−2k−1(n −
k)hk(n), where hk(n) is a polynomial in n, and con-
jectured explicit formulae for hk(n) for k ≤ 6. Luther
and Mertens [8] conjectured a formula for k = 7.

It is easy to show that DX(n, n − 1) = 2n−1nn−3

(sequence A127670 in OEIS [10]). Barequet et al. [3]
proved rigorously, for the first time, that DX(n, n −
2) = 2n−3nn−5(n − 2)(2n2 − 6n + 9) (sequence
A171860). The proof uses a case analysis of the pos-
sible structures of spanning trees of the polycubes,
and the various ways in which cycles can be formed
in their cell-adjacency graphs. Similarly, Asinowski
et al. [1] proved that DX(n, n − 3) = 2n−6nn−7(n −
3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3,
again, by counting spanning trees of polycubes, yet
the reasoning and the calculations were significantly
more involved. The inclusion-exclusion principle was
applied in the proof in order to count correctly poly-
cubes whose cell-adjacency graphs contained certain
subgraphs, so-called “distinguished structures.” In
comparison with the case k = 2, the number of such
structures is substantially higher, and the ways in
which they can appear in spanning trees are much
more varied. The latter proof provided a better un-
derstanding of the difficulties that one would face in
applying this technique to higher values of k. The
number of distinguished structures grows rapidly, and
the inclusion relations between them are much more
complicated. As anticipated [1], it is impractical to
achieve a similar proof manually for k > 3.

In this paper we create a theoretical set-up for prov-
ing the formula for DX(n, n− k), for a fixed k. Using
our implementation of this method, we find the ex-
plicit formula (which has never been proven before)
for DX(n, n− 4), stated in the following theorem.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: A polycube P , the corresponding graph γ(P ), and spanning trees of γ(P ).

Theorem 1 DX(n, n− 4) = 2n−7nn−9(n− 4)(8n8 −
128n7+828n6−2930n5+7404n4−17523n3+41527n2−
114302n+ 204960)/6.

2 Definitions and Notations

Integer Partition. A partition of a positive integer
m is a way of writing m as the sum of one or more
positive integers ai, i.e., m = a1 + ...+ ah. Two sums
that differ only in the order of their summands are
considered the same. Let Π(m) denote the set of all
partitions of m. We choose the canonic representa-
tion of a partition to be the list of its summands in
nondecreasing order. For a partition p, we denote by
|p| the number of summands in p and by p[i] the ith
summand of p. Also, we let π(p) denote the number
of essentially-different permutations of the summands
of p. When p1 and p2 are two partitions, we will say
that p1 contains p2, denoting this relation by p2 � p1,
if there is a subpartition p∗1 of p1 (an ordered sub-
set of the elements of p1), such that |p∗1| = |p2| and
p2[i] ≤ p∗1[i] for all 1 ≤ i ≤ |p2|.

Graph Isomorphism. Two directed edge-labeled
graphs G = (VG, EG) and H = (VH , EH), with re-
spective edge labels WG and WH , are isomorphic if
there is a bijection f : VG ↔ VH s.t. (a) For u, v ∈ VG
we have (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EH ;
and (b) For e1 = (u1, v1), e2 = (u2, v2) ∈ EG, the la-
bels of e1 and e2 are equal if and only if the labels of
(f(u1), f(v1)) and (f(u2), f(v2)) are equal.

3 Overview of the Method

Denote by Pn the set of proper polycubes of size n in
n−k dimensions. Let P ∈ Pn, and let γ(P ) denote
the directed edge-labeled graph that is constructed as
follows: The vertices of γ(P ) correspond to the cells
of P ; two vertices of γ(P ) are connected by an edge
if the corresponding cells of P are adjacent; an edge
has label i (1 ≤ i ≤ n − k) if the corresponding cells
have different i-coordinate. The direction of the edge
is from the lower to the higher cell. See Figure 1 for an
example. Since P 7→ γ(P ) is an injection, it suffices
to count the graphs obtained from the members of Pn
in this way. We shall count these graphs by counting
their spanning trees. A spanning tree of γ(P ) has n−1

edges labeled by numbers from the set {1, 2, ..., n−k};
all these labels are present, otherwise, the polycube is
not proper in n−k dimensions. Hence, n−k edges of
the spanning are labeled with the labels 1, 2, ..., n− k,
and the remaining k−1 edges are labeled with re-
peated labels from the same set. There is a bijection
between the possibilities of repeated edge-labels and
the partitions of the integer k−1. Specifically, each
partition p =

∑h
i=1 ai ∈ Π(k−1) corresponds to h re-

peated labels in the spanning tree, such that the ith
repeated label appears ai+1 times. In such case, we
will say that the tree is labeled according to p. When
we consider a spanning tree of γ(P ), we distinguish a
repeated label i that appears r times by i, i′, ..., i′(r−1).
However, when considering γ(P ), repeated labels are
assumed not to be distinguished. Every repeated la-
bel must occur an even number of times in any cycle
of γ(P ). In addition, the number of cycles in γ(P )
and the length of each such cycle are bounded from
above due to the limited multiplicity of labels.

In order to compute |Pn|, we go over all possible
directed edge-labeled trees of size n and count only
those that represent valid polycubes. By characteriz-
ing and analyzing all substructures that are present in
these trees, we compute how many of them actually
represent polycubes. Finally, we develop formulae for
the numbers of possible spanning trees of polycubes,
and then derive the actual number of polycubes.

4 Distinguished Structures

For each labeled tree, we attempt to build the corre-
sponding polycube. In this process two things may
happen:

(a) Cells may coincide (Figures 2(a,d)). A tree with
overlapping cells is invalid and does not corre-
spond to a valid polycube; and

(b) Two cells which are not connected by a tree edge
may be adjacent (Figures 2(b,e)). Such a tree
corresponds to a polycube P with cycles in γ(P ),
and therefore, its spanning tree is not unique.

In order to count correctly, we will consider small
structures, contained in these trees, which cause the
problems above. A distinguished structure is defined
as the union of all paths (edges and incident vertices)
that run between two coinciding or adjacent cells. We
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Figure 2: (a–f) A few distinguished structures for k = 4 (note that (f) is disconnected); (g) A cycle structure. A
dotted line is drawn between every pair of neighboring cells and around every pair of coinciding cells.

denote by DSk the set of distinguished structures in
n−k dimensions. With this characterization of distin-
guished structures, it is easy to design an algorithm
for producing DSk. We begin by generating all “free
trees” (non-isomorphic trees) of size (number of ver-
tices) t ≤ m(k), wherem(k) is a function of k specified
below. Then, we process each free tree T by labeling
it according to every partition p ∈ ∪k−1

i=1 Π(i), directing
its edges for obtaining a directed edge-labeled tree T ′,
and finally checking whether T ′ contains coinciding or
neighboring cells by a DFS traversal. If such cells are
detected, T ′ is added to DSk if it is not isomorphic
to any structure σ ∈ DSk of size t, and at least one
of the following conditions holds:

1. T ′ contains two coinciding or neighboring cells
which are connected by a path with t−1 edges
(Figures 2(a,b,d,e));

2. T ′ is isomorphic to the union of d1, ..., dm ∈ DSk,
such that the isomorphic copies of d1, ..., dm in T ′

cover all its edges (Figure 2(c)).

Disconnected distinguished structures (see Fig. 2(f))
are generated by checking if every collection of edge-
connected structures in DSk yields a single discon-
nected structure labeled according to p ∈ ∪k−1

i=1 Π(i).

Lemma 2 A connected (resp., disconnected) distin-
guished structure can have at most 3k− 2 (resp., 4k)
vertices. These sizes are attainable in the worst case.

Lemma 3 [1, Lemma 7] [3, Lemma 2] The number of
directed trees with n vertices and n−1 distinct edge
labels 1, ..., n− 1 is 2n−1nn−3, for n ≥ 2.

Let Tp denote the number of directed trees with n
vertices labeled according to p ∈ Π(k − 1). Then,
Tp = π(p)

(
n−k
|p|
)
2n−1nn−3.

Lemma 4 Let σ be a distinguished structure com-
posed of k∗ ≥ 1 trees s1, ..., sk∗ with a total of n∗

vertices and distinct edge labels 1, ..., n∗ − k∗. The
number of occurrences of σ in trees of size n with
distinct edge labels 1, ..., n− 1 is

Fn(σ) = (
∏k∗

i=1 |si|)
(n−n∗+k∗−1)!

(n−n∗)! nn−n
∗+k∗−2.

Proof. We proceed by double counting, enumerating
the sequences of directed edges that can be added
to a graph with n−n∗ vertices and the distinguished
structure σ, so as to form a rooted tree with n vertices.
One way is to add the edges one by one and count
the number of options available at each step. There

are N =
∏k∗

i=1 |si| options to choose a root for each
component si of σ. At the beginning, we have a forest
with n−n∗+k∗ rooted trees. After adding a collection
of edges forming a rooted forest with i trees, there are
n(i− 1) choices for the next edge: Its starting vertex
can be any of the n vertices of the graph, and its
ending vertex can be any of the i−1 roots other than
the root of the tree containing the starting vertex.
Therefore, the total number of choices is

N
n−n∗+k∗∏

i=2

n(i−1) = Nnn−n∗+k∗−1(n−n∗+k∗−1)!.

(1)
Alternatively, start with an unrooted edge-labeled
tree which contains σ, choose one of its n vertices
as a root, and choose one of the (n−n∗)! possible se-
quences, say, η, then label the n−n∗ vertices of the
tree according to η (the vertices not belonging to σ),
and “shift” each vertex label to the incident edge to-
wards the root, producing an edge-labeled tree. The
total number of sequences that are formed this way is

nFn(σ)(n− n∗)!. (2)

It follows from Eqs. (1) and (2 that the number of
occurrences of σ in unrooted trees with edge labels

1, ..., n−1 is Fn(σ) = N (n−n∗+k∗−1)!
(n−n∗)! nn−n

∗+k∗−2. �
Consider again Fig. 2. Let Fn(σ) denote the num-
ber of occurrences of σ in directed edge-labeled trees
of size n. Obviously, Fn(σ) = 2n−n

∗+k∗−1Fn(σ). Let
σ∗ ∈ DSk be a distinguished structure labeled accord-
ing to p∗ ∈ ∪k−1

i=1 Π(i). Denote by Op(σ∗) the number
of occurrences of σ∗ in directed trees of size n that
are labeled according to p ∈ Π(k − 1). Clearly, if
p∗ � p, then Op(σ

∗) = 0. To compute Op(σ∗), one
has to choose |p| repeated labels out of the possible
n−k labels, then choose the repeated labels of σ∗ out
of the |p| repeated labels. One also has to choose
the unique labels (if any) in σ∗. Moreover, one has
to calculate how many essentially-different structures

there are out of all
∏|p∗|
j=1(p∗[j]!) possible configura-

tions of the repeated labels of σ∗. For structure (a),
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all configurations yield the same structure, whereas
for structure (b), there are two essentially-different
structures: in the first, the label i is attached to the
head of the edge labeled `; and in the second, i′ is
attached to its head. For structure (c) there are six
different structures, a number obtained by computing
the number of symmetries of σ∗. Finally, multiplying
by Fn(σ∗) completes the calculation of Op(σ∗).

When counting the occurrences of σ ∈ DSk, other
distinguished structures which contain multiple oc-
currences of σ are counted multiple times. In order
to obtain the number of trees that contain σ, using
the quantity Op(σ), we build an inclusion-exclusion
graph IE=(V,E). This graph contains a vertex cor-
responding to each structure σ ∈ DSk. There is an
edge e = σ1 → σ2 labeled with c if σ1 contains c oc-
currences of σ2. Let `(e) denote the label of the edge
e. Let I(σ2) = {σ1 ∈ V : (σ1, σ2) ∈ E}. Let us denote
by Tp(σ) the number of trees of size n labeled accord-
ing to p ∈ Π(k−1) that contain σ as a subtree, then,
Tp(σ2) = Op(σ2)−∑σ1∈I(σ2) `((σ1, σ2))Tp(σ1).

5 Counting Polycubes

Every tree polycube gives rise to a unique span-
ning tree. For every possibility of repeated labels
p ∈ Π(k − 1), let us denote by DTp(n) the number of
spanning trees of all tree polycubes that are labeled
according to p. The total number of directed trees
with n vertices labeled according to p is Tp. Every
such tree corresponds to a tree polycube in Pn un-
less it contains a distinguished structure as a subtree.
Thus, we need to exclude all the trees that contain a
distinguished structure as a subtree. Hence,

DT(n, n− k) =
∑

p∈Π(k−1)

DTp(n)

=
∑

p∈Π(k−1)

Tp −
∑
σ∈DSk

Tp(σ)
∏|p|
j=1 p[j]!

.

Let us denote by C = C(k) the set of all cycle struc-
tures of polycubes proper in n−k dimensions. The set
C can be found using DSk: A distinguished structure
is a spanning tree of a cycle if it contains only neigh-
boring cells and no coinciding cells. For example, in
Figure 2, structure (e) is a spanning tree of the cycle
(g). For every cycle structure Ci ∈ C, let us denote by
PCi the number of polycubes P ∈ Pn that contain Ci
in γ(P ). Let σ ∈ DSk have c occurrences in Ci. Then,

PCi =
∑

p∈Π(k−1)

Tp(σ)

c
.

Finally, we obtain

DX(n, n− k) = DT(n, n− k) +

|C(k)|−1∑

i=0

PCi .

6 Results

The entire method was automated in a C++ program,
using Mathematica to simplify the final formula. Our
results agree with the formulae conjectured in the lit-
erature of statistical physics. For k=3, 147 distin-
guished structures (137 connected) and 12 types of
cycles were found. For k=4, 8397 distinguished struc-
tures (7814 connected), and 179 cycles were found.
Here are the main steps of the computation.
DT(2,2,2)(n) = 2n−7(n − 4)(n − 5)(n − 6)nn−9(8n6 −
84n5 + 438n4 − 1543n3 + 4236n2 − 9020n+ 19040)/6

DT(2,3)(n) = 2n−4(n − 4)(n − 5)nn−9(4n6 − 56n5 +
383n4 − 1654n3 + 5106n2 − 10920n+ 14112)/6

DT(4)(n) = 2n−5(n − 4)nn−9(4n6 − 84n5 + 851n4 −
5191n3 + 20190n2 − 47552n+ 53760)/6

DT(n, n−4) = DT(2,2,2)(n)+DT(2,3)(n)+DT(4)(n) =
2n−7(n − 4)nn−9(8n8 − 140n7 + 1010n6 − 3913n5 +
9201n4 − 15662n3 + 34500n2 − 120552n+ 221760)/6
∑178
i=0 PCi = 2n−7(n − 4)(n − 5)nn−9(12n6 − 122n5 +

373n4 + 68n3 − 1521n2 − 578n+ 3360)/6

DX(n, n− 4) = DT(n, n− 4) +
∑178
i=0 PCi =

2n−7nn−9(n − 4)(8n8 − 128n7 + 828n6 − 2930n5 +
7404n4 − 17523n3 + 41527n2 − 114302n+ 204960)/6

The parallel computation took about 15 minutes on
a computer with 12 processors and 65 GB of RAM.
This completes the proof of Theorem 1.
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Compact families of Jordan curves and convex hulls in three dimensions
(extended abstract)

Colm Ó Dúnlaing∗

Abstract

We prove that for certain families of semi-algebraic
convex bodies in R3, the convex hull of n disjoint
bodies has O(nλs(tn)) features, where s and t are
constants depending on the family: λs(n) is the max-
imum length of order-s Davenport-Schinzel sequences
with n letters. The argument is based on an appar-
ently new idea of ‘compact family’ of convex bodies
or discs, and of ‘crossing content’ among disc inter-
sections.

1 Introduction

Let S be a set of n disjoint closed bounded convex
bodies in R3: H(S) is their convex hull, the smallest
closed convex set containing their union

⋃
S.

H(S) can be decomposed into features, consist-
ing of facets (exposed facets, tunnel facets, and pla-
nar facets [2]), edges, and vertices; facets meet along
edges: edges meet at vertices. H(S) has O(e) features
(feature complexity), where e is the number of edges.

This abstract is concerned with the feature com-
plexity of H(S) assuming that the bodies in S are
drawn from a ‘compact family’ of convex bodies, a
term defined later. The feature complexity of con-
vex hulls and Voronoi diagrams of point sites in R3

is well known, O(n) and O(n2) respectively; and also
for spherical bodies (O(n2) for both). Hung and Ier-
ardi [3] studied the convex hull H(S) where S is a set
of bodies with few restrictions. They reported upper
bounds on the feature complexity of convex hulls, but
their approach is indirect and hard to follow. Our ap-
proach stresses a more careful definition of the prob-
lem (in terms of compact families): the feature com-
plexity of H(S) is reduced to the feature complexity
(counting edges and vertices) of unions of closed discs
on the boundaries ∂B of the bodies B in S.

After highlighting the main points in the analysis,
the abstract gives some time to bounding feature com-
plexity given a property called positive crossing con-
tent, defined below. An indication of why this prop-
erty holds for compact families of discs is given (Sec-
tion 4). The continuum mathematics connecting com-
pact families of convex bodies (Section 5) to compact

∗Mathematics, Trinity College, Dublin 2, Ireland. E-mail
odunlain@maths.tcd.ie

families of discs has been omitted for reasons of space.

2 Outline of the analysis

Definition 1 If X is a set in a topological space then
X is the closure of a set X, X◦ its interior, and ∂X
its boundary, i.e., X\X◦.

S2 is the unit sphere {x ∈ R3 : ‖x‖ = 1}.
A compact convex body B is rounded if (i) for every

point x on ∂B, there is a unique tangent plane to B
at x, and hence a unique outward unit normal nB(x)
to B at x, and (ii) x 6= y ⇒ nB(x) 6= nB(y). Equiva-
lently, (ii) every tangent plane meets B at exactly one
point.

We call the map nB : ∂B → S2 the outward normal
map.

Proposition 1 [2]. If B is a rounded compact convex
body then nB is a homeomorphism.

The chief points in the analysis are as follows.

• S = {B1, . . . , Bn} are disjoint rounded compact
convex bodies.

• Given any body Bi, the hidden and exposed re-
gions of Bi (relative to H(S)) are, respectively,
the closed subsets

(∂Bi) ∩ H(S)◦ and ∂Bi\H(S)◦.

B
1

B
2

B
3

Figure 1: The hidden part of ∂B1 is hatched. It is the
union of two topological discs.

• Given two (disjoint) bodies Bi, Bj , Bj induces a
hidden region on ∂Bi. This region, and the ex-
posed region, are topological discs, separated by

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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a Jordan curve on ∂Bi, which we call the Bi, Bj-
seam.

• The features of H(S) incident to Bi correspond
to the edges and vertices in the exposed (and hid-
den) regions on ∂Bi. Thus the feature complexity
of H(S) reduces to the complexity of unions of
discs on ∂Bi.

• Given a seam on Bi, its image under nBi
is a

Jordan curve on S2, a ‘pre-seam’ (Proposition
1), allowing us to study unions of discs on a fixed
space S2.

• Certain assumptions on the bodies Bi will imply
that the pre-seams are continuously differentiable
and the family of pre-seams is compact with re-
spect to the C1-norm (Definition 5).

We then say that the pre-seams form a compact
family of Jordan curves on S2.

• The definition of compact family introduces, im-
plicitly, a novel idea of ‘fatness’ on the discs which
the family defines: it might be called ‘stiffness.’
This leads to the all-important property of posi-
tive crossing content (Lemma 2) from which the
complexity bounds on H(S) follow.

• Two topological closed discs Di and Dj on S2

(with C1 boundaries) are in general position if
there are finitely many points in ∂Di ∩ ∂Dj and
at any such point the tangents to Di and Dj meet
transversely.

A list D1, . . . , Dn of discs is in general position
if every two discs are in general position and for
any three different discs, ∂Di ∩ ∂Dj ∩ ∂Dk = ∅.

• An intersection component is a connected com-
ponent of Di ∩ Dj , the intersection of two discs.
When in general position, every component is
bounded by sides alternately from ∂Di and ∂Dj .
When there are two sides, we call the component
an overlap, and otherwise a crossway.

• A family of discs in S2 has bounded intersection
if there is a uniform upper bound on |∂Di ∩∂Dj |
for any two discs in general position.

• Overlaps can be shown to contribute O(n) ver-
tices to the (external) boundary of a union of
n discs, given bounded intersection and positive
crossing content (Corollary 5). Without positive
crossing content there can be Ω(n2) crossways
(Figure 3).

Lemma 2 (positive crossing content). Given a
compact family of Jordan curves on S2, there exists

crossway

overlap

Figure 2: overlap and crossway.

Figure 3: a grid of n discs with Ω(n2) crossways.

a positive lower bound, whose supremum we call the
crossing content of the family, on

µ(K)

the metric measure (in S2) of any crossway K between
discs in general position.

• There is a combinatorial argument showing the
following. Let D1, . . . , Dn be discs in general po-
sition in S2, with bounded intersection and posi-
tive crossing content, and connected union, so the
complement of the union has simply-connected
components Hi.

Then there are O(n) pairs (Hi, Dj) where Dj has
an edge in common with Hi (Lemma 7).

Our estimate of the feature complexity of
⋃

Dj and
of H(S) follows immediately (Corollaries 8 and 10).

3 Complexity of unions of discs with positive
crossing content

Let S = {D1, . . . , Dn} be a set of discs, with C1

boundaries, in general position in S2. We consider the
feature complexity of their union,

⋃
S. We assume

that the discs Di come from a family with bounded in-
tersection number and positive crossing content (≥ ǫ,
say).

Definition 2 Let U be the union of all crossways be-
tween pairs of discs Di, Dj , 1 ≤ i < j ≤ n. A hub is
a (path-) connected component of U .

Lemma 3 There are O(1) hubs.

Proof. Every hub contains at least one crossway, and
therefore has measure ≥ ǫ. Hubs are disjoint, and
µ(S2) = 4π, so there are at most 4π/ǫ hubs. �
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L

C

C

L

C

C

Figure 4: connected unions of crossways in Di, links,
and coves. Overlaps are ignored.

Definition 3 Suppose that Di is a disc and U is the
union of crossways: by the arguments in Lemma 3,
Di ∩ U has O(1) components. Different components
may be part of the same hub. Let K1, . . . , Kk be
these components. In Figure 4 they are shaded. (Only
crossways are considered here; possible overlaps are
omitted from the figure.)

X = Di\K1 . . . \Kk

has a potentially unbounded number of components,
but if we distinguish links from coves there is a
bounded number of links.

A link in Di is either Di itself, if k = 0 (Di has
no crossways), or it is (the closure of) a component
of the above subset X of Di whose intersection with
∂Di is nonempty and disconnected.

A cove is a component whose intersection with ∂Di

is nonempty and connected.
An external link segment is a connected component

of L ∩ ∂Di, where L is a link in Di.

Lemma 4 In each disc Di there are O(1) links and
external link segments.1

Proof. From the links one can derive a recursive par-
tition of the set K1, . . . , Kk, a tree structure in which
there are ≤ 2k internal nodes, matching the external
link segments: but k is bounded. �

Corollary 5 There are O(n) overlaps.

Proof. There are O(n) links and hubs; retract the
overlaps to become very thin; choose centres in all
links and hubs; one can thread paths joining cen-
tres through the overlaps; because of bounded inter-
section and planarity considerations, there are O(n)
overlaps. �

The overlaps can be further retracted until they
become empty, making all overlaps disappear. This
reduces the number of features by O(n), and from
now on we assume there are no overlaps, only
crossways.

1There can be arbitrarily many coves.

Definition 4 We may assume
⋃

Di is connected,
since its feature complexity is the sum of those of its
connected components.

A hole is the closure of a connected component of
S2\⋃

Di.
Since the union is connected, every hole is simply

connected.

Lemma 6 Combinatorial lemma: if
⋃n

1 Di is con-
nected, then by re-ordering the list D1, . . . , Dn if nec-
essary, it can be arranged that every partial union⋃k

1 Di, 1 ≤ k ≤ n, is connected.

Lemma 7 There are O(n) pairs Di, Hj where Hj is
a hole incident to Di.

Proof. We can assume that
⋃k

1 Di is connected for
1 ≤ k ≤ n. We apply (forward) induction on k.
Suppose the disc Dk is added to an existing union⋃k−1

1 Di (k ≥ 2). It is enough to show that O(1) new
holes are created.

The number of holes is increased by virtue of an
existing hole, or holes, H, being split into several,
H1, . . . , Hℓ, by Dk. The holes are always simply con-
nected.

Let Hr and Hs be holes, part of the same hole H
split by Dk. H is (simply) connected. Consider any
path in H joining points yr and ys interior to Hr

and Hs. The path crosses ∂Dk at least twice. If the
path wanders into a cove from Hr, it must wander
out again without leaving Hr. So the path must cross
some external link segment incident to Hr. Thus all
the holes Hr are incident to external link segments in
Dk: there are O(1) external link segments, so adding
the disc Dk creates O(1) new holes. �

Corollary 8 There exist constants s and t such that⋃
Di has feature complexity O(λs(tn)).

Proof. For any Hi, suppose there are ti discs Dj

sharing an edge with Hi;
∑

i ti ≤ tn for some con-
stant t.

Let e1, . . . , ek be the edges incident to Hi, in anti-
clockwise order; each edge is on one of the discs Dj ,
and if we take the corresponding list of discs Dj , with
repetitions, since the discs have bounded intersec-
tion number, we have a Davenport-Schinzel sequence.
Therefore for some constant s, Hi has ≤ λs(ti) edges.
Adding,

⋃
Dj has O(λs(tn)) features. �

4 Compact families of discs

The obvious metric connecting compact sets is the
Hausdorff distance whose definition we omit to save
space. We refer to [1] for important facts about the
Hausdorff metric.

We need a finer metric on the space of closed discs
in S2.
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The definition of ‘compact family of discs’ in S2 is
chosen to ensure that every such family has positive
crossing content. It is reasonable to parametrise the
discs D by a mapping f : [0, 2π] → S2 so that ∂D is
the image of f , a Jordan curve, with D to its left.

As noted before, the maps f should be semialge-
braic of bounded degree, to ensure bounded intersec-
tion.

Clearly we can take two triangles in the plane and
move them around so that they have a crossway of
arbitrarily small area. This is because the triangle
boundaries are not differentiable. So the maps f
should be continuously differentiable.

Figure 5: positive crossing content needs differentiable
boundaries.

Definition 5 The C1 metric on C1 maps: [0, 2π] →
S2 is

max

(
sup

0≤t≤2π
‖f(t) − g(t)‖, sup

0≤t≤2π
‖f ′(t) − g′(t)‖

)
.

A family F of discs, parametrised by continuously
differentiable maps f , is compact if it is a compact
space under the C1 metric.

The crux of the proof that compact families of
discs have positive crossing content (Lemma 2) is: if
K is a connected component of D ∩ E and µ(K) = 0,
then K must be a subinterval of ∂D ∩ ∂E, and D
and E must be locally on opposite sides of K. If
we perturb D and E slightly, we can only introduce
overlaps near K, not crossways.

5 Compact families of convex bodies

For reasons of space, the remainder is very sketchy.
We consider a family G of convex bodies in R3. Such
bodies are parametrised by maps f , but implicitly
rather than explicitly: that is, each body should be
described as

Bf = {x : f(x) ≤ 1}

where f is a C2 function with nonzero first derivative
and positive definite second derivative and bounded
algebraic complexity. There is a C2 metric on such
functions f . The family G is compact if it is compact
under the C2 metric.

Proposition 9 Let Π be the family of pre-seams
from disjoint or tangential pairs B1, B2 drawn from

G. The pre-seam map is continuous on these pairs
and the discs the pre-seams bound is a compact fam-
ily.

Proof. Laborious: see [5]. �

There is an immediate corollary.

Corollary 10 Let S be a set of n disjoint convex
bodies in R3 drawn from a compact family G. Then
there exist constants s and t so that the convex hull
H(S) has O(nλs(tn)) features.

6 The Davenport-Schinzel effect

While it is doubtful that Corollary 10 is sharp, nonlin-
ear effects are unavoidable when positive crossing con-
tent is invoked. Superlinear complexity of the lower
envelopes of line-segments (see, for instance, [4]) car-
ries over to polygonal discs with positive crossing con-
tent, as Figure 6 suggests.

Figure 6: nonlinear effect with arbitrarily large cross-
ing content.
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New Geometric Algorithms for Staged Self-Assembly

Erik D. Demaine∗ Sándor P. Fekete† Arne Schmidt†

Abstract

We consider staged self-assembly, in which square-
shaped Wang tiles can be added to bins in several
stages. Within these bins the tiles may connect
to each other, depending on the glue types of their
edges. In general, self-assembly constructs complex
(polyomino-shaped) structures from a limited set of
square tiles. Previous work by Demaine et al. consid-
ered a setting in which assembly proceeds in stages. It
was shown that a relatively small number of tile types
suffices to produce arbitrary shapes; however, these
constructions were only based on a spanning tree of
the geometric shape, so they did not produce full con-
nectivity of the underlying grid graph. We present
new systems for stages assembly to assemble a fully
connected polyomino in O(log2 n) stages. Our con-
struction works even for shapes with holes and uses
only a constant number of glues and tiles.

1 Introduction

In self-assembly, a set of simple tiles form complex
structures without any active or deliberate handling
of individual components. Instead, the overall con-
struction is governed by a simple set of rules, which
describe how mixing the tiles leads to bonding be-
tween them and eventually a geometric shape.

The leading theoretical model for self-assembly is
the abstract tile-assembly model (aTAM). It was first
introduced by Winfree [12, 9]. The tiles used in
this model are building blocks called Wang tiles [11],
which are unrotatable squares with a specific glue on
each side. Equal glues have a connection strength
and may stick together. If two partial assemblies
(“supertiles”) want to assemble, then the sum of the
glue strength along the linkage needs to be at least
some minimum value τ , which is called the tempera-
ture. While assembling some shapes we consider the
minimum number of distinct tiles to uniquely assem-
ble this shape; this is called the tile complexitiy t.
Apart from that we also consider a minimum num-
ber of glues, which is the glue complexitiy g. Clearly,
g ≤ t ≤ g4.

In this paper we consider the staged tile assembly
model introduced by Demaine et al. [3]. In this model

∗CSAIL, MIT, USA. edemaine@mit.edu
†Department of Computer Science, TU Braunschweig, Ger-

many. s.fekete@tu-bs.de, arne.schmidt@tu-bs.de

the assembly process is split into sequential stages
that are kept in separate bins, with supertiles from
earlier stages mixed together consecutively to gain
some new supertiles. We can either add a new tile
to an existing bin, or we pour one bin into another
bin, such that the content of both get mixed. Hence,
there are bins at each stage. Unassembled parts get
removed. The overall number of necessary stages and
bins are the stage complexity and the bin complexity.
Demaine et al. [3] achieved a number of results that
are summarized in Table 1. Most notably, they were
able to come up with a system (based on utilizing a
spanning tree) that can produce arbitrary shapes in
O(diameter) many stages, O(log n) bins and a con-
stant number of glues; the downside is that the re-
sulting shapes are not fully connected.

1.1 Our results

We show that there is a staged assembly system for
an arbitrary polyomino with the following properties:

1. polylogarithmic stage complexity

2. constant glue and tile complexity

3. constant scale factor

4. full connectivity

We show how to assemble an arbitrary polyomino
even with holes. Most methods of Demaine et al.
using a constant number of glues and tiles have either
a big stage complexity or the build polyomino is not
fully connected. We use a polylogarithmic number of
stages with full connectivity and still use a constant
number of glues and tiles. On the other hand, we use
a small constant scale factor for the assembled shapes.
Table 1 gives an overview of the methods which uses
a constant number of glues and tiles.

1.2 Related work

As mentioned above, we stick to the aTAM. For other
models, see [1]. Other related geometric work by
Cannon et al. [2] and Demaine et al. [4] considers re-
ductions between different systems, often based on ge-
ometric properties. Fu et al. [6] use geometric tiles in
a generalized tile assembly model to assemble shapes
[6]. Fekete et al. [5] study the power of using more
complicated polyominoes as tiles.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Lines and Squares Glues Tiles Bins Stages τ Scale Conn. Planar

Line [3] (sect. 2.1) 3 6 7 O(log n) 1 1 full yes

Square — Jigsaw techn. [3] (sect. 2.2) 9 O(1) O(1) O(log n) 1 1 full yes

Square — τ = 2 (sect. 2.3) 4 O(1) O(1) O(log n) 2 1 full yes

Arbitrary Shapes Glues Tiles Bins Stages τ Scale Conn. Planar

Spanning Tree Method [3] 2 16 O(log n) O(diameter) 1 1 partial no

Simple Shapes [3] 8 O(1) O(n) O(n) 1 2 full no

Simple Shapes (sect. 3.2) 18 O(1) O(|V |) O(log2 n) 1 4 full no

Monotone Shapes [3] (sect. 3.1) 9 O(1) O(n) O(log n) 1 1 full yes

Shape with holes (sect. 3.3) 7 O(1) O(|V |) O(log2 n) 2 3 full no

Table 1: Overview of some results from Demaine et al. [3] and us using a constant number of glues and tiles.
Also pictured are bin complexity, stage complexity, temperature, scale factor, connectivity and planarity. n is
the side length of a smalles bounding square and V are the vertices of the polyomino.

Using stages has received attention in DNA self
assembly. Reif [8] uses a step-wise model for par-
allel computing. Park et al. [7] consider assembly
techniques with hierarchies to assemble DNA lattices.
Somei et al. [10] use a stepwise assembly of DNA tiles.
None of these works considers complexity aspects.

2 Lines and Squares

We start with staged assembly for lines and squares.
While the results of Section 2.1 and 2.2 are due to [3],
Section 2.3 states a new result.

2.1 1 × n lines

Theorem 1 A 1 × n-line can be assembled with a
τ = 1 staged assembly system using O(log n) stages,
3 glues, 6 tiles and 7 bins.

2.2 n× n squares (divide and conquer)

Making use of a “jigsaw” technique, Demaine et al. [3]
were able to come up with an efficient method that is

Theorem 2 An n× n-square can be assembled with
full connectivity in O(log n) stages with 9 glues, O(1)
tiles, O(1) bins, and τ = 1.

2.3 n× n squares with τ = 2

For τ = 2 assembly systems, it is possible to come up
with more efficient ways of constructing a square. The
construction is based on an idea by Rothemund and
Winfree (see [9]), which we adapt to staged assem-
bly. Basically, it consists of connecting two lines by a
corner tile, before filling up this frame; see Figure 1.

Theorem 3 There exists a τ = 2 assembly system
for a fully connected n×n square with O(log n) stages,
4 glues, 14 tiles and 7 bins.

Figure 1: First: Construction for square assembly.
Second: Filling up the square. Third: Intermediate
Result: some tiles have been assembled to the back-
bone. Fourth: Fully assembled square.

Proof. First we need to construct the 1×(n−1) lines
with strength 2 glues. We know from Theorem 1 that
a line can be constructed in O(log n) stages, 3 glues, 6
tiles and 7 bins. Because both lines are perpendicular
they will not connect. Therefore we can use all 7 bins
to construct both lines parallel. For each line we use
tiles such that the side, which is directed to the inner
side of the square, has a strength 1 glue. In the next
stage we mix together the single corner tile with the
two lines. In the last step we add a tile with the
strength 1 glues on all four sides. When the square is
filled no further tile will be connecting because every
connection would have a strength sum of 1.

Overall we needed O(log n) stages with 4 glues (3
for the construction, 1 for filling up the square), 14
tiles (6 for each line, 1 for the corner tile, 1 for filling
up the square) and 7 bins for the parallel construction
of the two lines. �

3 Assembling Polyominoes

Now we describe approaches for assembling arbitrary
polyominoes.

3.1 Monotone shapes

For monotone shapes, [3] showed the following.
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Theorem 4 A monotone polyomino can be assem-
bled with full connectivity in a τ = 1 staged assembly
system in O(log n) stages using 9 glues, O(1) tiles and
O(n) bins.

3.2 Simple shapes

We present a system for building simple polyominoes.
The main idea comes from [3], i.e., splitting the poly-
omino into strips. Then an arbitrary strip gets assem-
bled piece by piece and if there is a component which
can assemble to the currently strip then we create the
component and attach it to the strip.

Our new staged assembly system partitions the
polyomino into rectangles and uses them to assem-
ble the whole polyomino. We may use more bins than
the old method, but we have an improvement in the
stage complexity. We first consider a building block,
see Figure 2. Details are omitted due to limited space.

Lemma 1 A 2n × 2n square which has at most two
tabs each top or left side and at most two pockets each
bottom or right side (see Figure 2) can be assembled
with O(log n) stages, 9 glues, O(1) tiles and O(1) bins
at τ = 1.

Figure 2: A square (green) with tabs on top and left
side (yellow) and pockets on bottom and right side.

This construction works equally well for modified
2n × 2m rectangles. Hence, we can search for a de-
composition of a simple polyomino into components
of this type.

Theorem 5 Let V be the set of vertices of the poly-
omino. There exists a τ = 1 staged assembly system
that constructs a fully connected simple polyomino in
O(log2 n) stages with 18 glues, O(1) tiles, O(|V |) bins
and scale factor 4.

Proof. Details are omitted for lack of space. The
main idea is to cut the polyomino into rectangles.
These rectangles are recursively divided into subsets,
and assembled making use of jigsaw techniques.

Overall we have O(log n) stages to assemble the
O(|V |) rectangles with O(1) bins for each rectangle
plus O(log2 n) stages to assemble the polyomino from
the rectangles which are in total O(log2 n) stages and
O(|V |) bins. For the rectangles we need 9 glues and 9
glues for the remaining assemblage, hence, in total 18
glues and with it O(1) tiles. To uniquely assemble the
polyomino we need to scale it by a factor of 4 in total
(scaled by 2 two times). That is, we replace each tile
by a 4× 4 supertile. �

Figure 3: Left: A chosen rectangle (orange) which
splits the polyomino into components (green). Mid-
dle: Decomposition of splitting rectangle. Right: De-
composition of the components.

3.3 Temperature τ = 2 assembly

The idea for assembling polyominoes with holes at
τ = 2 is similar to squares. To this end, we construct
a backbone. For an arbitrary polyomino scaled by a
factor 3, this is a spanning construct formed with the
following line types:

1. the lines on the left boundary of the polyomino
or right boundary of a hole,

2. the lines on the right boundary of the polyomino
or left boundary of a hole,

3. the lines on the upper boundary of the poly-
omino or lower boundary of a hole,

4. the lines on the lower boundary of the polyomino
or upper boundary of a hole.

5. the lines that connect two components along the
first row of an 3× 3 supertile.

In order to avoid cycle in this construction, we leave
out the lowest leftmost line on the boundary of the
polyomino and the highest rightmost line on the
boundary of each hole. Moreover, the fifth line type
can be found by moving left from a leftmost (and low-
est in case of ties) tile of each hole until a line gets
hit. Hence, the construction yields a simple shape.
An example for a backbone can be found in Figure 4.

Figure 4: Left: A scaled polyomino with one hole.
Middle: Backbone without the fifth type of lines.
Right: Complete Backbone of the shape.

Lemma 2 Let V be the set of vertices of a polyomino
P . After scaling P by a factor of 3, the corresponding
backbone can be assembled in O(log2 n) stages with
4 glues, O(1) tiles and O(|V |) bins.
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Proof. The backbone consists of two types: lines and
connection tiles (see Figure 5). Observe that each
connection tile has either two or three adjacent lines.
Hence, in the adjacency graph they would have degree
two and three respectively.

Figure 5: Left: A backbone of a polyomino. Right: A
backbone decomposed into lines (green) and connec-
tion tiles (yellow).

The construction proceeds in three steps. Details
are omitted due to space constraints. In total we
use 4 glues, O(1) tiles and O(|V |) bins to assemble a
backbone for a given polyomino within O(log2 n+ 2 ·
log n) = O(log2 n) stages. �

We can now use this idea to construct any poly-
omino by assembling its backbone and then filling up:

Theorem 6 Let V be the set of vertices of the poly-
omino. Then there is a τ = 2 staged assembly system
that constructs a fully connected arbitrary polyomino
in O(log2 n) stages, 7 glues, O(1) tiles, O(|V |) bins
and scale factor 3.

Proof. The construction proceeds in two parts;
again, we have to omit details. For the first part we
present a construction such that no tile gets to an
unwanted position while filling up the polyomino.

Figure 6: Glue chart for 3×3 tiles to fill up the shape.

Blue glue
∧
= g1, orange glue

∧
= g2 and red glue

∧
= g3.

To fill up the polyomino we mix the nine kinds of
tiles (see Figure 6) plus the backbone in one bin. In
total we need O(log2 n) stages, 7 glues, O(1) tiles and
O(|V |) bins to assemble a fully connected polyomino,
scaled by a factor 3 from the target shape. �

4 Future Work

Our new methods have the same stage and bin com-
plexity and use quite a small number of glues. Be-
cause the bin complexity is in O(|V |) for some poly-
omino with V as the set of vertices, we may need
many bins if the polyomino has many vertices. Hence,

both methods are good for slightly branched polyomi-
noes. This raises the question for a staged assembly
system with the same complexities but a better bin
complexity for polyominoes with many vertices, i.e.,
if |V | ∈ O(n2)?

Another interesting challenge is to come up with a
more efficient system for an arbitrary polyomino. Is
there a staged assembly system of stage complexity
o(log2 n) without increasing the other complexities?
In total we think that both methods are a good ap-
proach to assemble a polyomino although the number
of bins may be a really big value.
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Caging Polygons by a Finger and a Wall

Bahareh Banyassady∗ Mansoor Davoodi† Ali Mohades*

Abstract

This paper addresses the problem of caging an ar-
bitrary polygon in the plane by a finger-wall caging
grasp, which consists of a finger of a robot arm and
a wall. An object is caged by a finger-wall grasp,
when it is impossible for the object to move to an ar-
bitrary placement far from its initial placement with-
out penetrating the finger or the wall. We present an
algorithm in O(n2 log n) time for computing all con-
figurations of the finger-wall grasp which cage a given
polygon with n edges. In addition, the output set
of all caging grasps can be queried in O(log n) time
to check whether a given arbitrary finger-wall grasp
cages the polygon.

1 Introduction

Robotic manipulators are designed to perform a wide
variety of tasks in production lines of diverse indus-
trial sectors, such as assembly or part orienting. To
perform these tasks the robot arm has to first grasp
the object in a proper way. Human being, whom
robotic researchers have tried to mimic in many areas,
to perform pick and place and also transportation, of-
ten grasp the object in a way that it can move among
the grasping fingers, but cannot escape through them
[1]. The caging problem (or capturing problem) was
posed by Kuperberg [2] as a problem of finding the
set of all placements of fingers which prevent an object
from moving arbitrarily far from its given position.

It is generally assumed in the literature that ob-
jects are grasped at some point contacts and idealiza-
tions such as a line or surface contact can be approx-
imated by two or more point contacts [3]. Fingertip
grasps (point contacts) enable precise control of the
object and adroit object manipulation, but limit the
amount of force which can be exerted on the work
piece. Inner-Link grasps where contacts occur at more
than one point along a link are more stable in the face
of environmental disturbances and can exert higher
forces on a grasped object. However, they are geo-
metrically more complicated and consequently more
difficult to analyze [4]. Hence, it is important to look
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Amirkabir University of Technology, Iran. {bahareh.banyasady,
mohades}@aut.ac.ir
†Department of Computer Science and Information Tech-

nology, Institute for Advanced Studies in Basic Sciences, Iran.
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for the other possible practical grasps in order to re-
duce the number of point contacts. In everyday life,
we frequently lean an object against a flat surface,
such as a table or a wall, to constrain its motions. In
the planar world, the analog of a wall is a supporting
line [5]. Thus, we consider finger-wall grasps in which
the finger is represented by a point, and the wall is
represented by a line.

There are also some researches on caging polygons
by three-finger and two-finger grasps. Pipattanasom-
porn and Sudsang [6], and Vahedi and van der Stap-
pen [7] independently have solved the problem for
two-finger grasps in O(n2 log n) time, and also con-
structed a data structure capable of answering queries
in O(log n) time. The running time of both solu-
tions is independent of the complexity of the reported
caging grasps. Whereas the number of elements in
finger-wall caging grasps are equal to the number of
elements in two-finger caging grasps, there are some
similarities between these problems solving methods.

In this paper we present an algorithm to find the
set of all finger-wall caging grasps of a given polygon
in O(nm log n) where m is the size of the polygon’s
convex hull. In section 2 some basic definitions and
notations are introduced. In section 3 the space con-
figuration is partitioned in order to reduce the search
space and in section 4 a graph which represents the
search space is constructed. Finally, in section 5 we
conclude the paper.

2 Preliminaries and Notations

This section addresses the problem of caging a poly-
gon P by a point and a line. Formally, P is caged
by a point and a line when its placement lies in a
compact valid region of its free configuration space
regarding the point and the line as obstacles. In-
formally, polygon P is caged by a point and a line
when it is impossible to take the object to arbitrary
placement far from its initial placement without pen-
etrating the point and/or the line. A placement of
the point and the line is a caging configuration if the
object is caged by that placement of the point and
the line. In general it is easier for the explanation to
consider the polygon fixed and to move the point and
the line instead while keeping their mutual distances
fixed. Therefore, P is caged when it is impossible to
rigidly move (translate and/or rotate) the point and
the line to infinity without penetrating P .

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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The given simple polygon P in the plane is bounded
by n edges and is assumed to lie inside ω1 (which ωi
is a circle of radius i centered at O). Finding the set
of all valid configurations of the point and the line
that cage P is the target in this paper. The bounded
configuration space F ⊂ R4 represents the set of all
possible configurations of the point and the line. For-
mally F = Fp×Fl in which Fp is the set of all points
which lie outside the polygon and inside the ω1 and
Fl is the set of points which are obtained from a map
of all lines which do not intersect the polygon and
do intersect the ω3. It can be proven that any point
which lies outside the ω1 is not the point of any caging
configuration, also any line which does not intersect
the ω3 is not the line of any caging configuration.

A unit trajectory of a point is a continuous func-
tion Tp : [0, 1] → Fp that starts at Tp(0) ∈ Fp and
terminates at Tp(1) ∈ Fp, where Tp(t) denotes the
position of the point on the plane at a normalized
time t ∈ [0, 1]. A unit trajectory of a line is a continu-
ous function T l : [0, 1]→ Fl that starts at T l(0) ∈ Fl
and terminates at T l(1) ∈ Fl, where T l(t) denotes the
position of the line on the plane at a normalized time
t ∈ [0, 1]. A synchronized trajectory pair (Tp, T l) rep-
resents the movement of the point and the line, such
that (Tp(t), T l(t)) denotes the system’s configuration
at a normalized time t ∈ [0, 1].

For x = (p, l) ∈ F , we refer to the segment which
starts at p and ends at its perpendicular intersection
point with l (and does not contain the intersection
point) as h[x) or h[p, l). x is a free configuration if
h[x) does not intersect the interior of the polygon.
A synchronized trajectory pair which starts at x ∈ F
and terminates at a free configuration is an escape tra-
jectory of x. The Euclidean distance from p to l is rep-
resented by d(x). Separation distance of the synchro-
nized trajectory pair (Tp, T l) is the maximum dis-
tance from Tp(t) to T l(t) during the trajectory, and
is represented by Sd(Tp, T l) = max

0≤t≤1
d(Tp(t), T l(t)).

The critical distance of x is the minimum separation
distance of all escape trajectories of x and is repre-
sented by cd(x) = min

∀(Tp,T l)
Sd(Tp, T l) where (Tp, T l)

is an escape trajectory of x. Obviously, for any x ∈ F
there is cd(x) ≥ d(x).

Proposition 1 x ∈ F is a caging configuration if and
only if cd(x) > d(x).

Caging configurations x and x′ are connected if
there is a synchronized trajectory pair from x to x′

in which all configurations are caging. We refer to a
maximal connected set of caging configurations as a
maximal caging set.

Lemma 2 If x is a caging configuration and there is
a synchronized trajectory pair (Tp, T l) from x to x′

that Sd(Tp, T l) < cd(x) then x and x′ are connected.

Lemma 3 If x and x′ are connected, cd(x) = cd(x′).

Regarding the proposition 1 computing the critical
distance of all configurations is sufficient to find the
caging configurations. According to Lemma 3 the crit-
ical distance of all members of a maximal caging set
are equal. Hence, in the following, the critical distance
of maximal caging sets are computed by partitioning
the configuration space and creating a corresponding
graph.

3 Configutation Space Partitioning

The vertices of the polygon P in counterclockwise or-
der are called v1, v2, . . . , vn and its edges are called
ei = vivi+1 (1 ≤ i ≤ n and vn+1 = v1). The ver-
tices of the convex hull of P in counterclockwise order
are called V1, V2, . . . , Vm in which m = |CH(P )| and
its edges are called Ej = VjVj+1 (1 ≤ j ≤ m and
Vm+1 = V1). We represent a partitioning for the con-
figuration space, such that the resulting cells of the
partitioning do not have intersections with each other
unless in their boundaries. x = (p, l) ∈ F is in cell
Fij ⊂ F , if ei is the first edge of P that intersects with
segment h[p, l) and Vj is the nearest vertex of CH(P )
to line l. And x = (p, l) ∈ F is in cell Ffree ⊂ F
if h[p, l) does not intersect P . Furthermore, we split
some cells into two or three cells in order to make
cells reaching some properties. In the following, the
two types of split functions are introduced.

For Fij ⊂ F we call the line which is along Ej−1
as the left boundary line or Lb for short, and the line
which is along Ej as the right boundary line or Rb
for short. Directions of Lb and Rb show the range of
directions for the line of Fij ’s configurations.

Type 1: If there is a configuration (p0, l0) ∈ Fij in
which l0 passes through Vj and directions of l0 and
ei are equal, then split the Fij into two cells of F lij
and F rij . Cell F lij contains (p, l) ∈ Fij in which the
direction of l is between directions of Lb and l0, and
cell F rij contains (p, l) ∈ Fij in which the direction of
l is between directions of l0 and Rb. By this split the
line direction of a cell’s configurations are all greater
or all smaller than the direction of ei.

Type 2: For cell F kij (k ∈ {null, r, l}) and its bound-
ary lines Lb and Rb, we call the endpoint of ei, which
has the smaller summation of distances from Lb and
Rb, as nearest endpoint or N for short. If there is a
configuration (p0, l0) ∈ F kij in which l0 passes through

Vj and is perpendicular to NVj , then split the F kij into

two cells of F l
′
ij and F r

′
ij . Cell F l

′
ij contains (p, l) ∈ F kij

in which the direction of l is between directions of Lb
and l0, and cell F r

′
ij contains (p, l) ∈ F kij in which the

direction of l is between directions of l0 and Rb. By
this split the line direction of a cell’s configurations
are all greater or all smaller than the direction of the
perpendicular line to NVj .
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Finally the number of obtained cells is of the order
of O(nm). Regarding the properties of cells it can be
observed that, for (p0, l0) ∈ F kij (k ∈ {null, r, l, r′, l′})
in which p0 ∈ ei, if p0 goes to N along ei while the
line is static, the distance of the point and the line
decreases in the trajectory. Also for (N, l0) ∈ F kij in
which l0 passes through Vj , if l0 rotates around Vj to
Lb or Rb while the point is static at N , the distance
of the point and the line change strictly monotonic
in any of both trajectories. Configuration xmin ∈ F kij
is a local minima of F kij if for all x ∈ F kij there is
d(xmin) ≤ d(x). Therefore, xmin = (N,B) where B
is either Lb or Rb which is the nearest one to N .

Lemma 4 If xmin is the local minima of F kij , for any

x ∈ F kij there is a trajectory that starts at x and ends
at xmin in which the distance of the point and the
line decreases.

Proof. Construct the trajectory which starts at x =
(p, l) and continues by getting p and l close to each
other along h[x), and terminates at x′ = (p′, l′) in
which p′ is the intersection of h[x) with ei and l′ is the
parallel line to l passing through Vj . The trajectory
continues by moving p′ along ei toN while the line l′ is
static, and then continues by rotating l′ to B while the
point is static at N . Obviously the final configuration
is xmin = (N,B) and the distance between the point
and the line decreases during the trajectory. �

Lemma 5 Any cell which is obtained from the con-
figuration space partitioning has intersection with at
most one maximal caging set.

Proof. If xmin is the local minima of F kij and x0 ∈ F kij
is a caging configuration, there is a trajectory with
separation distance of d(x0) which starts at x0 and
terminates at xmin (Lemma 4); thus, x0 and xmin
are connected (Lemma 2). In results xmin, x and
similarly all the other caging configurations of F kij are
members of the same maximal caging set. �

Conclusion: F kij has intersection with a maximal

caging set if and only if the local minima of F kij is a
caging configuration.

Lemma 6 If xmin is the local minima of F kij then
min
x∈Fk

ij

cd(x) = cd(xmin).

Proof. If xmin is not a caging configuration then
there is not any caging configuration in F kij (Lemma 5)

and cd(x) = d(x) for all x ∈ F kij . In results
min cd(x) = min d(x) = d(xmin) = cd(xmin). If xmin
is a caging configuration, assume to the contrary that
there is x0 ∈ F kij for which cd(x0) < cd(xmin). Ac-
cording to Lemma 4 there is a trajectory from x0
to xmin with separation distance of d(x0) which is

d(x0) ≤ cd(x0) < cd(xmin). So on the reverse trajec-
tory is the one from the caging configuration xmin to
x with separation distance of less than cd(xmin). So
cd(x) = cd(xmin) (Lemma 2), which contradicts our
assumption. Thus, cd(x) ≥ cd(xmin) for all x ∈ F kij
and it results min cd(x) = cd(xmin). �

Theorem 7 Any x ∈ F kij is a caging configuration if
and only if d(x) < cd(xmin).

Proof. If x is a caging configuration we have d(x) <
cd(x), also x and xmin are connected (Lemma 2); and
cd(x) = cd(xmin) (Lemma 3); so, d(x) < cd(xmin).
If d(x) < cd(xmin) it is equal to d(x) < min

x∈Fk
ij

cd(x)

(Lemma 6) ; hence, d(x) < cd(x) and it means that x
is a caging configuration. �

Regarding the Theorem 7, in order to find the set
of caging configurations of a cell, it is sufficient to
compute the critical distance of the cell’s local minima
-called critical distance of the cell. In the following,
computing the critical distance of cells is discussed.

4 Finding Critical Distance of Cells

Considering xb = (pb, lb) ∈ F such that pb is on the
boundary of the polygon and lb is a tangent line to
the polygon. For escape trajectory (Tp, T l) of xb, the
corresponding squeezed escape trajectory (Tps, T ls)
with smaller separation distance is constructed in 3
steps. In the first step, for t ∈ [0, t′] when t′ is the
smallest value that (Tp(t′), T l(t′)) is a free configura-
tion, call the first intersection point of h[Tp(t), T l(t))
with the polygon as Tp′(t), and from the two lines
which are parallel to T l(t) and tangent to the poly-
gon call the nearest one to T l(t) as T l′(t). Obviously
the separation distance of (Tp′, T l′) is smaller than
or equal to the separation distance of (Tp, T l). In
the second step, if Tp′ is discontinuous, add segments
between each two consecutive discontinuous points to
make the continuous trajectory Tp′′, so the separa-
tion distance of (Tp′′, T l′) and (Tp′, T l′) in [0, t′] are
equal. In the third step, scale t′ in order to make
a synchronized trajectory pair in [0, 1]. We refer
to the obtained trajectory as squeezed escape tra-
jectory and represent it with (Tps, T ls). Obviously
Sd(Tps, T ls) ≤ Sd(Tp, T l). Thus, to find the critical
distance of xb computing the separation distance of
all different squeezed escape trajectories is sufficient.
Since the local minima of a cell, which was represented
by xmin = (N,B), has the properties of xb, in order
to find the critical distance of a cell, we will compute
the separation distance of all squeezed escape trajec-
tories of the cell’s local minima. In the following, the
relationship among critical distances of adjacent cells
have been formalized.
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Consider B(Fi, Fj) represents the set of configu-
rations which are in common boundaries of Fi and
Fj . If x1 ∈ B(Fi, Fj) and x2 ∈ B(Fj , Fk) there
are two trajectories, one from x1 and the other
from x2 to local minima of Fj with separation dis-
tances of respectively d(x1) and d(x2). Hence, there
is a trajectory from x1 to x2 with separation dis-
tance of max{d(x1), d(x2)}. It concludes that for a
squeezed escape trajectory which starts at x0 and
passes through F1, F2, . . . , Ff , Ffree the separation
distance is max

1≤i≤f
{d(xi)} where xi ∈ B(Fi, Fi+1).

Thus, among all squeezed escape trajectories pass-
ing through F1, . . . , Ff , Ffree the one which passes
through the local minima of common boundaries’ con-
figurations has the minimum separation distance.

There is a transition between each two cells Fi and
Fj if B(Fi, Fj) 6= ∅, and the cost of the transition is
equal to the minimum of d(x) for all x ∈ B(Fi, Fj).
In the worst case situation, the number of transitions
that a cell is associated with can be as high as O(n).
Fortunately, we found out there are only O(1) tran-
sitions associating with a cell, which are called basic
transitions, that have effects on the computation of
separation distance of any squeezed escape trajectory.

Theorem 8 If there is a transition between F1 and
F2 with the cost of d(x12), there is a sequence of basic
transitions that starts at F1 and ends at F2, in which
the maximum cost of the basic transitions are less
than or equal to d(x12).

For xmin ∈ Fi, any squeezed escape trajectory is
corresponding to a sequence of cells starting at Fi
and ending at Ffree. Thus in order to compute the
cd(xmin) which is the minimum separation distance of
all squeezed escape trajectories for xmin, we should
find the minimum of maximum of basic transitions’
cost in any sequence of cells starting at Fi and ending
at Ffree. In this paper the basic transitions are not
described; however, finding the basic transitions and
their cost is of order O(nm log n) by running O(nm)
times of Ray shooting algorithm. From insights we
have obtained so far, we are now ready to concrete
the definition of our search space.

Connectivity graph G = (VG, EG) is a weighted
graph that any vertex vgi ∈ VG corresponds to cell
Fi ⊂ F and any edge eij ∈ EG corresponds to a basic
transition between two cells Fi and Fj , and its weight
is equal to the cost of the basic transition which is
called wij . Also critical distance of vgi ∈ VG is equal
to the critical distance of Fi which is called D(vgi).

Theorem 9 For any vgi ∈ VG if N(vgi) ⊂ VG is
the set of all vertices which are adjacent to vgi, then
D(vgi) = min

vgj∈N(vgi)
(max (D(vgj), wij)).

According to the Theorem 9 if vgi and vgj are adja-
cent vertices of G then D(vgi) ≤ max{(D(vgi), wij)};
To compute the critical distances of vertices we
present a slightly modified Dijkstra algorithm. The
first step of the algorithm is to initialize the crit-
ical distance of all vertices as infinite except the
critical distance of vgfree, which corresponds to cell
Ffree ⊂ F , as zero. In each step a vertex vgi,
which has the minimum critical distance between all
the not selected vertices, is selected and the critical
distance of its adjacent vertices are updated; If the
present critical distance of vgj ∈ N(vgi) is greater
than max{(D(vgi), wij)} set max{(D(vgi), wij)} as
the updated critical distance of vgj . Then add the
vgi to the set of selected vertices. Do the same proce-
dure until all the vertices have been selected. Finally,
by having critical distance of vertices, the set of all
caging configurations of any cell Fi, which is repre-
sented by Ci = {x ∈ Fi|d(x) < D(Fi) = D(vgi)}, can
be computed. To decide whether a given configura-
tion x is a caging configuration or not, find cell Fi
that x ∈ Fi by running the Ray shooting algorithm in
O(log n), then d(x) and D(Fi) should be compared.

5 Conclusion

It was discussed that computing the critical distance
ofl maximal caging sets is sufficient to find all the
caging configurations. Thus, the configuration space
was partitioned and the critical distance of cells was
computed by searching in a graph. Computing the
vertices and the edges of the connectivity graph are
respectively of the order of O(nm) and O(nm log n),
searching the graph to compute the critical distance
of cells is also O(nm log n). Therefore, the running
time of the algorithm is O(nm log n) and the query
can be answered in O(log n) time.

References

[1] M. Vahedi. Caging Polygons with Two and Three
Fingers. Phd thesis, Department of Information and
Computing Science, Utrecht University, 2009.

[2] W. Kuperberg. Problems on Polytopes and convex
sets. DIMACS Workshop on Polytopes, 1990.

[3] A. Bicchi, V. Kumar. Robotic Grasping and Contact:
A Review. In ICRA, IEEE, 2000.

[4] B. S. Eberman. Whole Arm Manipulation: Kinemat-
ics and Control. Thesis, Department of Mechanical
Engineering, Massachusetts Institute of Tech, 1989.

[5] C. Wentink, A. F. van der Stappen, Mark Overmars.
Algorithms for Fixture Design. UU-CS, 1996.

[6] P. Pipattanasomporn, A. Sudsang. Two-finger
caging of nonconvex polytopes. IEEE Transaction on
Robotics, 2011.

[7] M. Vahedi, A. F. van der Stappen. Towards
Output-Sensitive Computation of Two-Finger Caging
Grasps. In CASE, 2008.

100



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Subquadratic Medial-Axis Approximation for smooth Curves in R3

Christian Scheffer˚
Department of Computer Science, TU Braunschweig

scheffer@ibr.cs.tu-bs.de

Abstract

We present the first algorithm to approximate the me-
dial axis of a smooth, closed curve γ Ă R3 in sub-
quadratic time. Our algorithm works on a sufficient
dense ε-sample and comes with a convergence guar-
anty for the non-discrete but continuous approxima-
tion object.

1 Introduction

The medial axis of a geometric shape was originally
introduced by Blum [4] and is defined as follows:

Definition 1 The medial axis Mγ Ă R3 of a smooth,
closed curve γ Ă R3 is defined as the closure of all
points which have at least two closest points from γ.

Using the medial axis as an implicit representation
of the underlying (smooth) shape γ, the concept of
the medial axis has a large variety of applications in
theory and practice, see e.g. Dey and Zhao as a sur-
vey [8]. Often, γ is just given by a discrete point
sample. To analyze the density of such point sam-
ples, Amenta et al. [2] introduced the local feature
size lfsp¨q. It is defined as the function which maps
each point from γ onto its distance to Mγ . Based on
this, Amenta et al. defined an ε-sample S as a point
sample on γ so that for each x P γ there is at least
one sample point s P S with |xs| ď εlfspxq.

In this paper, we aim for an approach which com-
putes a continuous approximation object ĂMγ of Mγ

so that ĂMγ converges Mγ for εÑ 0, only based on an
ε-sample and in subquadratic time.

Similar to the surface case, the medial axis of a
curve may be a highly unstable object so that ar-
bitrary small changes of γ imply large modifications
of the medial axis—see [12] for an illustration in the
surface case. Hence, the aim to compute an object
which realizes a Hausdorff distance to the medial axis
which is related to the sampling density, seems to be
too ambitious. An alternative approximation quality
would be a convergence guarantee for the computed
approximation object, as has already been done in
previous approaches which deal with similar problem
settings [2, 3, 5, 8, 12].

˚This research was supported by DAAD grant 57052155.

To our best knowledge, our approach is the first one
approximating the medial axis Mγ of an underlying
and unknown smooth curve γ Ă R3 by a piecewise-
linear object, while it simultaneously guarantees a
convergence guarantee and a sub quadratic running
time w.r.t. n :“ |S|.

2 Preliminaries

Previous algorithms from literature which approxi-
mate the medial axes of curves, compute the Voronoi
diagram as a subroutine which in turn leads to a
quadratic running time in R3 [2, 3, 5].

In [12], Scheffer and Vahrenhold present an algo-
rithm to approximate the medial axis MΓ of an un-
derlying surface Γ, while providing the same guaran-
tees as we aim for, i.e., a convergence guarantee, a
subquadratic running time, and a continuous approx-
imation object. From a high-level point of view, their
approach is the following: First compute an asymp-
totical lower bound rε for the sampling density ε. Then
approximate for each sample point s its Voronoi cell
Vor psq up to an error related to rε and hence related
to the sampling density ε. After that, read out ob-
jects from the approximation of Vor psq and triangu-
late these objects by applying a reconstruction of Γ.

To approximate MΓ, Scheffer and Vahrenhold [12]
compute for each sample point s the two approximate
pole points which are defined as the two farthest ver-
tices of the piecewise-linear approximation of Vor psq
and which lie on different sides of MΓ. A key property
of an approximate pole point ps of a sample point s is
that it is an appropriate approximation of the normal
ns to the surface in s, i.e., =psps, nsq P O pεq.

In our case, the normals to the curve γ in a sample
point s are not given via a line but by a plane which
is pierced by γ in s. Hence, for approximating the
whole medial axis Mγ of a γ P R3 it is not sufficient
to compute only two approximate pole points for each
sample point.

Finally, Scheffer and Vahrenhold triangulate the ap-
proximate pole points by just mapping the topology of
a surface reconstruction from the sample points to the
approximate pole points. This works since for each
sample point there is one approximate pole point in
the interior of the surface and one approximate pole
point in the outside of the surface. In our case, we
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have for each sample point a set of points, see be-
low, which has to be triangulated so that a one-to-one
mapping would not be productive for a continuous ap-
proximation object.

3 The Algorithm

To apply the global approach from [12], there are two
issues needed to be addressed:

(1) In our case, the construction of two approximate
pole points do not provide an appropriate approxima-
tion of the normal plane to γ in a sample point s.
Thus, we compute for each sample point s a point set
Es, which we call the equator of s and which shapes a
ring around γ in s.

To obtain a convergence guarantee for the equa-
tors and hence for our whole approximation object,
we have to relate the density of the equators and the
quality of the approximation of the Voronoi cells to
the sampling density ε. Unfortunately, the value of ε
is not computable which is caused by the instability
of the medial axis. But what we can do is, similar as
in [12], that we can compute an asymptotical lower
bound rε for the sampling density—see Algorithm 4.
By relating the density of the equators and the qual-
ity of the approximation of the Voronoi cells to rε,
we obtain the desired convergence guarantee for the
equators.

(2) In our case, γ is a one-dimensional shape, while
the union of the equators induces a two-dimensional
structure. This implies that only a reconstruction of
γ is not able to cover the topology of the equators.
Hence, we combine the topology of γ with the or-
der of the equators around γ. This leads to a two-
dimensional structure. In particular, we triangulate
the equator points of each pair of sample points which
lie neighboured on γ seperately. Hence, we first have
to compute a piecewise-linear reconstruction N which
is homeomorphic to γ—see Algorithm 2.

3.1 Outline of the Algorithm

First, we compute a homeomorphic curve reconstruc-
tion N of γ in near-linear time. Second, we compute
an asymptotical lower bound rε for the sampling den-
sity by combining a preliminary version of the equa-
tors of constant density with a so called control func-
tion ψ. After that, we compute the final version of
the equators, whose densities are related to rε. And
finally, we triangulate the equators by combining N
with the ordering of the equators around N .

The resulting overall approach is formulated by Al-
gorithm 1.

3.2 Near-linear time Curve Reconstruction

Dey and Kumar [7] proposed (by the NN-CRUST)
an approach which reconstructs a smooth closed 1-

Algorithm 1 Approximating MΓ by a simplicial
complex with a stable convergence guarantee in sub
quadratic time

1: function ApproxMA(S, κ)
2: N :“ pS,Eq :“ AN-CRUSTpSq
3: δ Ð 1

4000
4: E :“ EquatorspS,N, δq
5: for all s P S do
6: ψ psq Ñ max

! |s´s s|
2 ,

|s`s s|
2

)

7: rε :“ ApproxEpsilonpS, E , ψq
8: δ :“ rε 1

κ

9: E :“ EquatorspS,N, δq
10: Initialize ĂMγ to be the empty set.

11: ĂMγ Ð TriangEquatorPointspS, E , Eq
12: return ĂMγ

manifold only based on an ε-sample S Ă γ in any di-
mension. As a subroutine, they compute the Voronoi
diagram VD pSq of the entire point cloud S. Unfor-
tunately, this implies a worst-case running time of
O
`
n2
˘

in R3. To avoid this in the context of curve
reconstruction in R3, we apply the approach of ap-
proximate neighborhoods.

Definition 2 ([11, 12]) Let X Ă R3 be a discrete
point set and let x be an arbitrary point in X. An
approximate neighborhood ANσN pxq of x w.r.t. X is
defined as a subset of X, such that there exists a set of
cones CσN psq, with apex at x and an angular radius
of σN ě 0 that covers R3, such that the following
holds: A point x1 P X belongs to the approximate
neighborhood ANσN pxq if, and only if, there is a cone
C P CσN psq such that x1 is the point in CσN psq X
X that minimizes the distance from its orthogonal
projection onto the axis of C to x.

In the definition given above, Ruppert and Sei-
del [11] assume that the point which minimizes the
distance of its orthogonal projection, is uniquely de-
fined, e.g., by breaking ties according to an arbitrary
but fixed numbering of the points, and allow the axis
of a cone C to be an arbitrary ray R starting from the
cone’s apex x and lying inside the cone. The angu-
lar radius of C is defined as arg minσNě0t= pxa,Rq ď
σN | a P Cu.

Lemma 1 ([11]) For an arbitrary point set X Ă R3

and σN ą 0, the approximate neighborhoods for
all points from X can be computed in overall time
O
`|X|{σ2

N ¨ log2 p|X|q˘.
By applying the approximate neighborhoods of all

sample points, we can give an algorithm which recon-
structs γ in near-linear time—see Algorithm 2.

Since we choose σN P O p1q, we get the desired
running time for our AN-CRUST algorithm.
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Algorithm 2 Near-linear curve reconstruction

1: function AN-CRUST(S)
2: E ÐH
3: N Ð pS,Eq
4: δ Ð 1

10
5: for all s P S do
6: Comp. ANδ{20 psq Ź Definition 2
7: s1s Ð NNANδ{20psq psq
8: HSs Ð

 
x P R3|= ps1ssxq ě π

2

(

9: s2s Ð NNANδ{20psqXHSs psq
10: E Ð E Y tps, s1sq , ps, s2squ
11: return N

Corollary 2 Based on a sufficient dense ε-sample,
AN-CRUST computes a piecewise-linear reconstruc-
tion N of γ which is homeomorphic to γ in
O
`
n ¨ log2 pnq˘ time.

3.3 Computing the Equators

For an arbitrarily chosen sample point s P S, we de-
note the successor and predecessor of s w.r.t. N by
ss̀ and sś . In addition to this, we denote the line
in the plane induced by ss̀ , sś and s, with s P rts
so that =

`
sś srts

˘ “ =
`
ss̀ srts

˘
by rts. If sś , s and

ss̀ lie collinear, we define rts such that ss̀ , sś , s P rts
holds. Furthermore, we denote the plan which lies
orthogonal to rts in s by rNs.

To define the equator of s, we consider a so called
screw around s. Informally spoken, a screw Hs of s,
w.r.t. to an angle σH is a partitioning of the Voronoi
cell of s w.r.t. the approximate neighborhood of s.

Definition 3 Let s P S and σH ą 0 be chosen ar-
bitrarily and let R1, ..., Rk, for k “ rp40 ¨ 2 ¨ πq{σH s
be a set of (counterclockwise) ordered rays starting

from s so that Ri Ă rNs and = pRi, Ri`1q ď σH
40 hold.

For all i P t1, ..., ku, let Hi
s be the halfplane which

is bounded by rts so that Ri Ă Hi
s holds. We define

His as the intersection of the Voronoi cell of s, w.r.t.
ANσH{20 psq Y tss̀ , sś u, with the space sandwiched
between Hi

s and Hi`1
s .

A screw Hs of s w.r.t. σH is defined as the set of
all intersections between two paddles Hi

s and Hi`1
s as

constructed above.

The equator of s is defined as the union of the far-
thest points which lie between the paddles of a screw.

Definition 4 An equator point eis of s, w.r.t. His is
defined as a farthest point from His. Based on this,
we define the equator Es of s as

Ť
i“1,...,k e

i
s.

Definition 4 leads to Algorithm 3 which computes
the union E of all equators, while their density is re-
lated to an input parameter δ.

VorANδ/20∪{s−s ,s+s } (s)

t̃s

s

t̃s

s

t̃s

Ñs

Hk
s

Hs Es

rk

t̃s

Figure 1: Constructive definition of the equator Es.

Algorithm 3 Computing the Equators.

1: function Equators(S, N , δ)
2: for all s P S do
3: Comp. ANδ{20 psq Ź Definition 2
4: Comp. VorANδ{20psqYtss̀ ,sś u psq Ź [10]

5: Comp. rts and rNs
6: Comp. Hs w.r.t. δ Ź Definition 3
7: Comp. equator Es of s Ź Definition 4
8: E Ð E Y tEsu

return E

Lemma 3 Algorithm 3 has a running time of

O
´ |S|
δ3 ¨max

 
log2 pnq , log2

`
1
δ2

˘(¯
.

By applying Algorithm 3 twice in a bootstrapping
approach, see Steps 4 and 9 of Algorithm 1, we can
guarantee that each equator point lies close to the
medial axis at which “close” will be related to a func-
tion involving exclusively ε. In particular, we first
guarantee that the distance to the equators which are
computed in the first iteration of Algorithm 3 is an
asymptotical upper bound for lfsp¨q. For this, we can
show the following result.

Lemma 4 dist
`
eis,Mγ

˘ ď 15 ¨ ?δ ` ε ¨ |seis|
Since the local feature size is defined as the mini-

mum distance to the medial axis and since ε, δ P O p1q,
the distance function to E can be shown to be an
asymptotical upper bound for lfsp¨q.

Lemma 5 lfs psq ď 1.4 ¨ dist pE , sq
In the following, we show how to apply Lemma 5 to

obtain an asymptotical lower bound for the sampling
density which in turn is applied for the computation
of the final version of the equators.

3.4 Computing a lower bound rε for ε

We compute rε as the ratio of a lower bound for εlfsp¨q
and an asymptotical upper bound for lfsp¨q.

Lemma 5 implies that dist pE , sq is an asymptotical
upper bound for lfsp¨q. But, since one of our main
goals is to achieve a sub quadratic running time, we
do not compute dist pE , .q exactly for all sample points,
but approximate it by applying the following result.
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Theorem 6 (Chan [6] - Theorem 2.5) Let X Ă
R3 be a given pointset. For a query point
q P R3 one can find an p1` ξq-approximate near-
est neighbor in O

`
ξ1´3{2 ¨ log2 p|X|q˘ time with

O
`
ξ1´2{3 ¨ |X| ¨ log p|X|q˘ preprocessing time and

space.

We denote the resulting approximate distance func-
tion to E by rlfs p.q. Since the application of Chan’s al-
gorithm reports equator points within a distance of at
least dist pE , .q, Lemma 5 implies lfs psq ď 1.4 ¨ rlfs psq.

Hence, we finally have to compute an upper bound
for εlfsp¨q. We do this by computing a so called con-
trol function ψ. In particular, we define ψ psq as
max t|sś s|{2, |ss̀ s|{2u. Since S is an ε-sample, we can
show that ψ psq ď ε

1´ε lfs psq holds, for all s P S.

Finally, we define rε :“ maxsPStψ psq { rlfs psqu. The
resulting approach is given by Algorithm 4.

Algorithm 4 Computing a non-trivial lower bound
for ε
1: function ApproxEpsilon(S, ψ, E)
2: Preprocessing for ANN-queries Ź Theorem 6
3: ξ “ 1

10
4: for all s P S do
5: rlfs psq :“ |s,ANNps, ξ, Eq| Ź Theorem 6

6: rε :“ maxsPS
!
ψpsq
Ălfspsq

)

return rε

Corollary 7 Algorithm 4 runs in O
`
n ¨ log2 pnq˘.

For the second iteration of Algorithm 3, we choose
δ related to rε. Since the value of δ has an influence on
the running time of Algorithm 3, we have to guarantee
that the inverse of rε is upper-bounded by a polynomial
of n.

Lemma 8 Θ
`

1
n

˘ ď rε ď 1.5 ¨ ε
By combining Lemma 4 and Lemma 8, we can show

the following result.

Corollary 9 limεÑ0 pEq “Mγ .

3.5 Triangulating E
We obtain an appropriate triangulation of E by trian-
gulating each pair of equators of two connected sample
points separately. In particular, see right, we apply
the sweep plane paradigm for each edge
e “ ps1, s2q P N separately as follows:
Let H be an arbitrarily chosen half-
plane which is bounded by the line in-
duced by s1 and s2. In a nutshell, the

s1
s2

q

q2

q4

q6

q8

q11

q14
q15

q3

q5

q7

q9

q10

q12

q13

q16

desired triangulation is derived by rotating H around
e. For each point in time during this rotation process,
we store the two last visited equator points q1 and q2

from Es1 and Es2 . Each time when H meets a new
equator point q, we add the triangle 4pq1, q2, qjq, if
q1, q2 and qj do not lie at infinity.

Since the triangulating process described above has
a near-linear running time w.r.t. the number of equa-
tor points, we can upper-bound its running time by
O
`
nδ´1 logpδ´1q˘. By applying a similar approach to

the proof of Corollary 9, we get our main result.

Corollary 10 Algorithm 1 computes a piecewise-
linear approximation ĂMγ of Mγ in Opn1` 3

κ ¨ log2 pnqq
time, such that limεÑ0

ĂMγ “Mγ holds.
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Analysis-suitable adaptive T-mesh refinement with linear complexity ∗

Philipp Morgenstern† Daniel Peterseim‡

Abstract

The following extended abstract summarizes the arti-
cle [11]. We present an efficient adaptive refinement
procedure that preserves analysis-suitability of the T-
mesh, this is, the linear independence of the T-spline
blending functions. We prove analysis-suitability of
the overlays and boundedness of their cardinalities,
nestedness of the generated T-spline spaces, and lin-
ear computational complexity of the refinement proce-
dure in terms of the number of marked and generated
mesh elements.

1 Introduction

T-splines [14] have been introduced as a free-form geo-
metric technology and are one of the most promising
features in the Isogeometric Analysis (IGA) frame-
work introduced by Hughes, Cottrell and Basilevs
[8, 4].

Since T-splines can be locally refined [13], they po-
tentially link the powerful geometric concept of Non-
Uniform Rational B-Splines (NURBS) to meshes with
T-junctions (referred as “hanging nodes” in the Fi-
nite Element context) and, hence, the well-established
framework of adaptive mesh refinement. However,
in [1], it was shown that T-meshes can induce lin-
early dependent T-spline blending functions. This
prohibits the use of T-splines as a basis for analyt-
ical purposes such as solving a partial differential
equation. In particular, the mesh refinement algo-
rithm presented in [13] does not preserve analysis-
suitability in general. This insight motivated the
research on T-meshes that guarantee the linear in-
dependence of the corresponding T-spline blending
functions, referred to as analysis-suitable T-meshes.
Analysis-suitability has been characterized in terms
of topological mesh properties in 2d [10] and, in an
alternative approach, through the equivalent concept

∗The authors gratefully acknowledge support by the
Deutsche Forschungsgemeinschaft in the Priority Program 1748
“Reliable simulation techniques in solid mechanics. Develop-
ment of non-standard discretization methods, mechanical and
mathematical analysis” under the project “Adaptive isogeomet-
ric modeling of propagating strong discontinuities in heteroge-
neous materials”.
†Institute for Numerical Simulation, Rheinische Friedrich-

Wilhelms-Universität Bonn, Germany
‡Institute for Numerical Simulation, Rheinische Friedrich-

Wilhelms-Universität Bonn, Germany

of Dual-Compatibility [5], which allows for general-
ization to three-dimensional meshes.

A refinement procedure that preserves the analysis-
suitability of two-dimensional T-meshes was finally
presented in [12]. The procedure first refines the
marked elements, producing a mesh that is not
analysis-suitable in general, and then computes a re-
finement which is analysis-suitable and generates a T-
spline space that is a superspace of the previous one.
This second refinement involves heuristic local esti-
mates on how much refinement is needed to achieve
the desired properties. Hence, the reliable theoreti-
cal analysis of the algorithm is very difficult and so is
the analysis of corresponding automatic mesh refine-
ment algorithms driven by a posteriori error estima-
tors. Such analysis is currently available only for tri-
angular meshes [2, 3, 15], but is necessary to reliably
point out the advantages of adaptive mesh refinement.

In this paper, we present a new refinement algo-
rithm which provides

1. the preservation of analysis-suitability and nest-
edness of the generated T-spline spaces,

2. a bounded cardinality of the overlay (which is the
coarsest common refinement of two meshes),

3. linear computational complexity of the refine-
ment procedure in the sense that there is a con-
stant bound, depending only on the polynomial
degree of the T-spline blending functions, on the
ratio between the number of generated elements
in the fine mesh and the number of marked ele-
ments in all refinement steps.

2 Adaptive mesh refinement

This section defines the new refinement algorithm and
characterizes the class of meshes which is generated
by this algorithm. The initial mesh is assumed to
have a very simple structure. In the context of IGA,
the partitioned rectangular domain is referred to as
index domain. This is, we assume that the physical
domain (on which, e.g., a PDE is to be solved) is
obtained by a continuous map from the active region,
which is a subset of the index domain. Throughout
this paper, we focus on the mesh refinement only, and
therefore we will only consider the index domain. For
the parametrization and refinement of the T-spline
blending functions, we refer to [12].

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Definition 1 (Initial mesh, element) Given pos-
itive numbers M,N ∈ N, the initial mesh G0 is a ten-
sor product mesh consisting of closed squares (also
denoted elements) with side length 1, i.e.,

G0 :=
{

[m− 1,m]× [n− 1, n] | m ∈ {1, . . . ,M},
n ∈ {1, . . . , N}

}
.

The domain which is partitioned by G0 is denoted by
Ω :=

⋃G0.

The key property of the refinement algorithm will
be that refinement of an element K is allowed only if
elements in a certain neighbourhood are sufficiently
fine.

Definition 2 (Level) The level of an element K is
defined by

`(K) := − log2 |K|,
where |K| denotes the volume of K. This implies that
all elements of the initial mesh have level zero and that
the bisection of an element K yields two elements of
level `(K) + 1.

Definition 3 (Vector-valued distance) Given
x ∈ Ω and an element K, we define their distance as
the componentwise absolute value of the difference
between x and the midpoint of K,

Dist(K,x) := abs
(
mid(K)− x

)
∈ R2.

For two elements K1,K2, we define the shorthand no-
tation

Dist(K1,K2) := abs
(
mid(K1)−mid(K2)

)
.

Definition 4 Given an element K and polynomial
degrees p and q, the (p, q)-patch is defined by

Gp,q(K) :=
{
K ′ ∈ G | Dist(K ′,K) ≤ Dp,q(`(K))

}
,

where

Dp,q(k) =

{
2−k/2

(⌊
p
2

⌋
+ 1

2 ,
⌈
q
2

⌉
+ 1

2

)
if k is even,

2−(k+1)/2
(⌈
p
2

⌉
+ 1

2 , 2
⌊
q
2

⌋
+ 1
)

if k is odd.

Definition 5 (Bisection) Given a mesh G and an
element K ∈ G, we denote by bisect(G,K) the mesh
that results from a level-dependent bisection of K,

bisect(G,K) := G \ {K} ∪ child(K),

with child(K) :=

{
bisectx(K) if `(K) is even,

bisecty(K) if `(K) is odd,

where bisectx (resp. bisecty) denotes a bisection in
the first (resp. second) dimension.

Figure 1: Example of the patch Gp,q(K) in non-
uniform mesh for even `(K) and p = q = 5. K is
marked in blue, and Gp,q(K) is highlighted in light
blue.

Definition 6 (Multiple bisections) We introduce
the shorthand notation bisect(G,M) for the bisection
of several elements M = {K1, . . . ,KJ} ⊆ G, defined
by successive bisections in an arbitrary order,

bisect(G,M) := bisect(. . . bisect(G,K1) . . . ,KJ).

Algorithm 1 (Closure) Given a mesh G and a
set of marked elements M ⊆ G to be bisected, the
closure closp,qG (M) of M is computed as follows.

∼M :=M
repeat

for all K ∈ ∼M do∼M :=
∼M∪

{
K ′ ∈ Gp,q(K) | `(K ′) < `(K)

}

end for
until

∼M stops growing

return closp,qG (M) =
∼M

Algorithm 2 (Refinement) Given a mesh G and
a set of marked elements M ⊆ G to be bisected,
refp,q(G,M) is defined by

refp,q(G,M) := bisect(G, closp,qG (M)).

Definition 7 (admissible bisections) Given a
mesh G and an element K ∈ G, the bisection of
K is called admissible if all K ′ ∈ Gp,q(K) satisfy
`(K ′) ≥ `(K).

In the case of several elements M =
{K1, . . . ,KJ} ⊆ G, the bisection bisect(G,M) is
admissible if there is an order (σ(1), . . . , σ(J)) (this
is, if there is a permutation σ of {1, . . . , J}) such that

bisect(G,M) = bisect(. . . bisect(G,Kσ(1)) . . . ,Kσ(J))

is a concatenation of admissible bisections.
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→

→ →

→ →

→ →

Figure 2: Algorithm 1 recursively marks coarser ele-
ments in the patch of the initially marked K. In this
case, the computation of closp,qG ({K}) involves three
iterations of the algorithm.

Definition 8 (Admissible mesh) A refinement G
of G0 is admissible if there is a sequence of meshes
G1, . . . ,GJ = G and markings Mj ⊆ Gj for j =
0, . . . , J − 1, such that Gj+1 = bisect(Gj ,Mj) is an
admissible bisection for all j = 0, . . . , J − 1. The set
of all admissible meshes, which is the initial mesh and
its admissible refinements, is denoted by Ap,q.

Proposition 1 Any admissible mesh G and any
set of marked elements M ⊆ G satisfy that
refp,q(G,M) ∈ Ap,q.

Altogether, Ap,q is the set of meshes that are gener-
ated by Algorithm 2.

3 Main results

This section discusses the coarsest common refine-
ment of two meshes G1,G2 ∈ Ap,q, called overlay and
denoted by G1 ⊗ G2. Subsequently, we give results on
analysis-suitability, nestedness, and complexity.

Definition 9 (Overlay) We define the operator
Min⊆ which yields all minimal elements of a set that
is partially ordered by “⊆”,

Min⊆(M) :=
{
K ∈M | ∀K ′ ∈M : K ′ ⊆ K ⇒ K ′ = K

}
.

The overlay of G1,G2 ∈ Ap,q is defined by

G1 ⊗ G2 := Min⊆
(
G1 ∪ G2

)
.

Proposition 2 For any admissible meshes G1,G2 ∈
Ap,q, the overlay G1 ⊗ G2 is also admissible.

Lemma 3 For all G1,G2 ∈ Ap,q holds

# (G1 ⊗ G2) + #G0 ≤ #G1 + #G2 .

Theorem 4 All admissible meshes (in the sense of
Definition 8) are analysis-suitable.

Corollary 5 All admissible meshes provide T-spline
blending functions that are non-negative, linearly in-
depent, and form a partition of unity [6, 7]. Moreover,
on each element K ∈ G ∈ Ap,q, there are not more
than 2(p+1)(q+1) T-spline basis functions that have
support on K [7, Proposition 7.6].

This means that on each element, each T-Spline func-
tion communicates only with a finite number of other
T-spline functions, independent of the total number
of functions. This is an important requirement for
sparsity of the linear system to be solved in Finite El-
ement Analysis, in the sense that every row and every
column of a corresponding stiffness or mass matrix is
a sparse vector.
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Theorem 6 For any two meshes G1,G2 ∈ Ap,q that
are nested in the sense G1 � G2, the corresponding
T-spline spaces are also nested.

Theorem 7 Any sequence of admissible meshes
G0,G1, . . . ,GJ with Gj = refp,q(Gj−1,Mj−1) and
Mj−1 ⊆ Gj−1 for j ∈ {1, . . . , J} satisfies

|GJ \ G0| ≤ Cp,q

J−1∑

j=0

|Mj |,

with Cp,q depending only on p and q.

Theorem 7 shows that, with regard to possible mesh
gradings, the refinement algorithm is as flexible as
successive bisection without the closure step. How-
ever, this result is non-trivial. Given a mesh G ∈ Ap,q
and an element K ∈ G to be bisected, there is no
uniform bound on the number of generated elements
#(refp,q(G, {K}) \ G).

4 Conclusion

We presented an adaptive refinement algorithm for
a subclass of analysis-suitable T-meshes that pro-
duces nested T-spline spaces, and we proved theo-
retical properties that are crucial for the analysis of
adaptive schemes driven by a posteriori error estima-
tors. As an example, compare the assumptions (2.9)
and (2.10) in [2] to Theorem 7 and Lemma 3, respec-
tively. The presented refinement algorithm can be
extended to the three-dimensional case, which is our
current work. The factor Cp,q from the complexity
estimate is affine in each of the parameters p, q and
increases exponentially with growing dimension. We
aim to apply the proposed algorithm to proof the rate-
optimality of an adaptive algorithm for the numerical
solution of second-order linear elliptic problems using
T-splines as ansatz functions. Similar results have
been proven for simple FE discretizations of the Pois-
son model problem in 2007 by Stevenson [15], in 2008
by Cascon, Kreuzer, Nochetto and Siebert [3], and re-
cently for a wide range of discretizations and model
problems by Carstensen, Feischl, Page and Praetorius
[2].
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The Slope Number of Segment Intersection Graphs

Udo Hoffmann ∗

Abstract

We prove that it is NP-hard to determine the mini-
mal number of slopes that is required to draw a seg-
ment representation of a segment intersection graph.
As a side product we obtain new proofs for the NP-
hardness of the recognition of grid, segment and pseu-
dosegment graphs. We also show, that the minimum
number of slopes of a segment graph can drop arbi-
trarily upon the removal of a single vertex.

1 Introduction

Intersection graphs of segments are known to have
complex geometric and combinatorial properties. The
recognition is NP-hard [1] and even complete for the
existential theory of the reals [2]. Kratochv́ıl and Ma-
toušek [8] show that the complexity of this problem
decreases if the number of slopes allowed for a seg-
ment representation is bounded by a constant. Then,
for every fixed k ≥ 2 the problem of deciding whether
a graph is the intersection graph of segments using k
different slopes is NP-complete [3].

The slope number of segment graphs is also of in-
terest for planar graphs. Planar bipartite graphs are
known to be contact graphs of segments with two
slopes [4], while de Castro et al. [5] show that each
K3-free planar graph can be represented as a segment
contact graph of segments using three slopes. This re-
sult is supported by a result of Grötzsch , who showed
that a K3-free planar graph is 3-colorable. Chalopin
and Gonçalves [6] show that each planar graph can
be represented as segment intersection graph. Assum-
ing a representation of a segment intersection graph
without two intersecting segments of the same slope,
the only lower bound on the slope number of planar
graphs is four by the four color theorem.

Our main result is that the minimization of the
slope number is NP-hard. As side product we obtain
new proofs which show that the recognition of seg-
ment, pseudosegment, and grid intersection graphs is
NP-hard. The new reduction complements previous
ones, since it distinguishes between (pseudo)segment
and grid intersection graphs, while the proof of Kra-
tochv́ıl [3] gives graphs which are a grid intersec-

∗uhoffman@math.tu-berlin.de, Technische Universität.
Supported by the Deutsche Forschungsgemeinschaft within
the research training group ‘Methods for Discrete Structures’
(GRK 1408).

tion graph iff they are a (pseudo)segment intersection
graph.

We also show that the number of slopes does not
behave well under deleting or adding vertices. There
are segment graphs using a linear number of slopes
in terms of their vertices, but the removal of one ver-
tex leads to a segment representation using only two
slopes.

In the rest of this section we introduce the nota-
tions. In Section 2 we present our main observation:
A connection between Hamiltonian paths in planar
graphs and segment representations of an associated
graph. In Section 3 we show that there are bipar-
tite graphs that require a high number of slopes, and
that removing one segment leaves a grid intersection
graph. The hardness results for minimizing the num-
ber of slopes, which also follow directly from Section 2,
are shown in Section 4.

1.1 Notation

An intersection representation of a graph is an assign-
ment of a set to each vertex, such that two vertices are
adjacent if and only if the sets intersect. For simplic-
ity we do not distinguish between vertices and sets,
e.g. we say the vertex v intersects the vertex w when
we talk about intersection graphs. We study the fol-
lowing classes of intersection graphs.

The class of segment graphs, i.e., the intersection
graphs of segments in the plane, is denoted by SEG.
We consider pure representations of segment inter-
section graphs, i.e., we forbid intersections of paral-
lel segments. Segment intersection graphs using only
two slopes (without loss of generality vertical and hor-
izontal) are also known as grid intersection graphs
(GIG). The intersection graph of pseudosegments, i.e.,
of curves, such that each pair of curves intersects at
most once, is denoted by pSEG.

We will assume that all segments have positive
slopes. This can be achieved by a suitable linear trans-
formation of the plane.

A k-page book embedding, is a linear order L of the
vertices and a partition of the edges into k sets, such
that each set can be drawn without crossings in a half
plane, where the vertices are drawn on the boundary
in the order given by L. A 1-page book embedding
exists iff the graph is outerplanar. Here the linear
order L corresponds to a possible order of the vertices
in the outer face in an outerplanar drawing.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Let G = (V,E) be a graph. Denote its full subdivi-
sion by PG, i.e., the graph PG := (V ∪E, {ve|v ∈ e ∈
E}). Let P ∗G := (V ∪E ∪ {e∗}, E(PG)∪ {ve∗|v ∈ V })
be the full subdivision of PG where one vertex that is
incident to every original vertex is added.

We are interested in segment and GIG representa-
tions of P ∗G. It is well known that PG admits a GIG
representation if and only if G is planar, for exam-
ple as bar visibility representations in [11]. A semibar
visibility representation of a graph is a representa-
tion of vertices as vertical segments with the same
y-coordinate of the lower endpoint. The edges are
represented as horizontal sightlines.

Lemma 1 ([12, 7]) A graphG has a semibar visibil-
ity representation iff it has a 1-page book embedding.
This is the case iff G is outerplanar. All possible or-
ders of the vertices in a representation are given by
the order of the vertices of an outer face cycle of G.

1.2 Results

The main tools used in the paper are the following
two theorems which are proven in Section 2.

Theorem 2 A graph G has a 2-page book embed-
ding iff P ∗G is a GIG.

It is known that a graph has a 2-page book em-
bedding iff it is a subgraph of a planar graph with
Hamiltonian cycle [7]. We give a similar condition for
(pseudo)segment representations of P ∗G.

Theorem 3 For a graph G, the graph P ∗G is a
(pseudo)segment intersection graph iff G is a sub-
graph of a planar graph with Hamiltonian path.

The graph class described by the theorem above are
known as deque graphs [9].

The characterizations in Theorem 2 and Theorem 3
allow the translation of the following lemma to The-
orem 5.

Lemma 4 The Hamiltonian cycle problem in max-
imal planar graphs with given Hamiltonian path is
NP-hard.

Theorem 5 The recognition of grid intersection
graphs is NP-complete, even if a segment represen-
tation (using four slopes) is given.

In Section 3, we show that the number of slopes can
decrease drastically by removing only one vertex.

Theorem 6 There is a family of graphs Gn, n ∈ N,
with |V (Gn)| = n, such that each segment representa-
tion of Gn requires Θ(n) slopes, but Gn has a vertex
v, such that Gn − v has a GIG representation.

2 Segment intersection graphs and Hamiltonian
paths

In this section we give a proof for Theorem 2 and
Theorem 3.

e∗

v1

v8

v1
v8

Figure 1: A GIG rep. of P ∗G and a 2-page book em-
bedding of G.

Proof of Theorem 2. Consider a GIG representa-
tion of P ∗G as in Figure 1. The representation above e∗

can be modified to a semibar visibility representation
by shortening the edges to contacts. This drawing
can be replaced by a 1-page book embedding with the
same order of the vertices. The same modification for
the edges below e∗ leads to a 2-page book embedding.

On the other hand, the two 1-page book embed-
dings can be replaced by equivalent semibar visibility
representations, such that a 2-page book embedding
leads to a GIG representation of P ∗G. �

We give an idea of the proof of Theorem 3. We first ar-
gue that a pseudosegment representation of P ∗G gives
a Hamiltonian path in a planar graph G′ which has G
as subgraph. Consider a (pseudo)segment represen-
tation of P ∗G. The order of intersections on e∗ gives
the order of the vertices on a Hamiltonian path. Let
v1, . . . , vn be the order of the vertices according to
their intersection with e∗. If vivi+1 ∈ E(G) there is
nothing to show. Otherwise we draw a pseudosegment
’parallel’ to e∗ that intersects only vi and vi+1. This
way we obtain a representation of P ∗G′ where G′ is a
planar graph with Hamiltonian path v1, . . . , vn and G
as subgraph.

Now we show that a planar graph G′ with Hamil-
tonian path v1, . . . , vn admits a pseudosegment repre-
sentation of P ∗G′ .

Let G′ be a planar graph with Hamiltonian path
v1, . . . , vn. We construct a pseudosegment represen-
tation of P ∗G′ from a planar drawing of G′. Consider
a planar drawing of G′ with small circles as vertices
and pseudosegments as edges, that have contacts on
its incident vertices.

We draw e∗ as curve that intersects only the vertices
in the order of the Hamiltonian path. The vertices
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P

e1 e2

e3

Figure 2: A pseudosegment representation with blue Hamiltonian path and red bad edge and its segment
representation. A graph with orange Hamiltonian path with a long chain of bad edges (red). A gadget to fix a
certain Hamiltonian path.

are still drawn as cycles and the Hamiltonian path
intersects twice with each vertex vi, 2 ≤ i < n. So
opening the small circles removing a segment of vi,
that contains only one intersection with e∗, leads to
a pseudosegment representation of P ∗G′ , see Figure 2.
�

We omit a full proof for the fact that P ∗G is also a
segment intersection graph.

3 Number of slopes

We continue to examine the structure of the bad edges
to give a lower bound on the number of slopes used
for a segment intersection representation of P ∗G. In
the following we assume that e∗ is represented by a
horizontal segment.

In a segment representations of P ∗G, edges between
the upper part (above e∗) of one vertex and the lower
part (below e∗) of another vertex are possible as
shown Figure 2. We call such an edge a bad edge.
We call a bad edge vivj , i < j, an upwards edge if
it connects the lower part of vi and the upper part
of vj and a downwards edge otherwise. Denote the
closed curve on the pseudosegments vi, vj , vivj and e∗

by Cij . If vivj is a bad edge, then the bounded region
of Cij contains exactly one of the ends of e∗. If it
contains the end close to v1 we call vivj a front edge,
otherwise a back edge. The choice of the outer face
of G determines (for a fixed Hamiltonian path) which
bad edge is a front resp. a back edge.

We fix a segment representation of P ∗G. Let
wiwi+1, wi+1wi+2, . . . , wi+k−1wi+k be bad edges of
the same upwards/downwards-type. We call the ver-
tices a chain of length k + 1. If all the edges of the
chain are front or all back edges it is called a monotone
chain. The length of the longest chain gives a lower
bound on the number of slopes needed in a segment
representation with this fixed Hamiltonian path.

Lemma 7 Let p be a Hamiltonian path in G and C
be the longest chain. Any representation of P ∗G whose

vertex order is given by p requires 2
⌈
|C|
2

⌉
slopes.

Proof. Consider a segment representation of P ∗G. For
a bad front edge we know that the segment with the
upper part has a larger slope then the segment with
the lower part (otherwise they can only be connected
by a back edge), and the opposite holds for back edges.
The bad edges connecting vertices in the chain require
slopes that lie between the slopes of their incident
vertices. On the other hand, one chain can be divided
into two monotone chains of front and back edges by
the choice of the outer face of G. At least one of
the monotone chains of front or back edges has length

l :=
⌈
|C|
2

⌉
. P ∗G requires l slopes for the vertices of the

monotone chain, l− 1 for the edges between, and one
for e∗. �

We show that there is a triangulation that has only
Hamiltonian paths including long chains. This way,
we prove that there are graphs G such that P ∗G re-
quires a large number of slopes in any segment repre-
sentation.

Lemma 8 LetG be a planar graph with Hamiltonian
path p = v1, . . . , vn. There exists a planar graph G′

with Θ(|V (G)|) vertices, such that G is an induced
subgraph of G′ and every Hamiltonian path in every
triangulation of G′ visits at least half the vertices of
G in the same order (up to the reverse) as p.

Proof. Consider the graph P in Figure 2. This graph
has the property that every path from e1 to e3 using
all inner vertices also uses e2. Hence for two copies
P1, P2 of P , where two outer vertices are identified
every Hamiltonian path visits P1, P2 consecutively, or
has one end in each. Now, glueing a copy of P on
every edge of p, i.e., we identify the edge vivi+1 of p
with e1e3 of a copy of P , leads to a graph G′ with the
desired property. �

Proof of Theorem 6. Consider the graph Gn with
3n vertices in Figure 2 with the drawn Hamiltonian
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path p (orange), i.e., nested triangles with spiraling
Hamiltonian path. Gn has a chain of length n (red).
Constructing G′n from Lemma 8 gives a graph, such
that P ∗G′

n
requires

⌈
n
4

⌉
different slopes in any segment

representation. G′n and hence P ∗G′
n

has Θ(n) vertices.
Removing e∗ leads to a grid intersection graph. �

4 Computational complexity

The complexity of the recognition of (pseudo)segment
and grid intersection graphs is NP-hard by the facts
that the Hamiltonian cycle and Hamiltonian path
problem in maximal planar graphs are NP-hard [10].

That the minimization of the required number of
slopes of a segment intersection graphs is NP-hard
follows from the Theorem 5.

The idea of the proof Lemma 4 is the following. A
gadget of from [10] transforms a planar cubic bipartite
graph G into a maximal planar graph T which has a
Hamiltonian cycle iff G has.

Now we are interested in 3SAT instances that lead
to a maximal planar graph with Hamiltonian path
in the reduction. A class of 3SAT instances satisfy-
ing this property is the following. Consider a 3SAT
instance I with a truth assignment A, such that A
satisfies all but one clause of I. It turns out that
a Hamiltonian path in the triangulation can be con-
structed using A. We call those instances almost sat-
isfiable.

Lemma 9 Deciding if an almost satisfiable 3SAT
instance has a satisfying truth assignment is NP-
complete.

Proof. We give a reduction from the 3SAT problem.
Given a 3SAT instance, we take all clauses and modify
them in the following way. We replace each literal in
each clause with a new variable, so each variable ap-
pears only once. In addition we introduce a variable
x and the clause x. For each pair of variables y1, y2,
where both corresponded to a literal of the same vari-
able,we add the clauses x ∨ y1 ∨ y2 and x ∨ y1 ∨ y2 to
make them equivalent if they were both non-negated
or both negated, or x∨y1∨y2 and x∨y1∨y2 if one lit-
eral was negated. The constructed 3SAT is satisfiable
iff the original is: In a satisfying truth assignment x
is false, hence the introduced clauses give the equiv-
alence between y1 and y2, or their negation respec-
tively. This results in a satisfying truth assignment
for the original 3SAT. On the other hand, a truth
assignment satisfying all but one clause is given by
setting x true and all other variables true. The size of
the new 3SAT is polynomial in the size of the original
one. �

The Hamiltonian path in a resulting triangulation
of the reduction can be constructed such that both

ends of the path lie in the gadget corresponding to
the variable x, such that x is in ’superposition’ and
the path treats x as true and false simultaneously. We
omit the details here due to space limitations.
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Recognizing Weighted Disk Contact Graphs

Boris Klemz∗ Martin Nöllenburg∗ Roman Prutkin∗

Abstract

Disk contact representations realize graphs by map-
ping vertices to interior-disjoint disks in the plane
such that disks touch each other if and only if the cor-
responding vertices are adjacent. Deciding whether
a vertex-weighted graph can be realized so that the
disks’ radii coincide with the vertex weights has been
proven NP-hard. In this work, we analyze the prob-
lem for special graph classes and show that it remains
hard even for very basic ones, thereby strengthening
previous NP-hardness results. On the positive side,
we present linear-time algorithms for two restricted
versions of the problem.

1 Introduction

A disk intersection representation is a set of disks in
the plane that can be interpreted as a graph contain-
ing a vertex for each of its disks and an edge for each
pair of intersecting disks. Disk intersection graphs
are graphs that have a disk intersection representa-
tion and generalize disk contact graphs, that is, graphs
that have a disk intersection (or contact) representa-
tion with interior-disjoint disks. Koebe’s Theorem [9]
is a classic result in graph theory that states that any
planar graph is a disk contact graph, and for any disk
contact representation it is easy to obtain a planar
drawing of the realized graph.

Application areas for disk intersection/contact
graphs include modeling physical problems like wire-
less communication networks [6], covering problems
like geometric facility location [10, 11], visual repre-
sentation problems like the generation of area car-
tograms [4] and many more (various examples are
given by Clark et al. [3]). Often, one is interested in
recognizing disk graphs or generating representations
that do not only realize the input graph, but also
satisfy additional requirements. For example, Alam
et al. [1] recently studied graphs having disk con-
tact representations, in which the ratio of the largest
disk radius to the smallest is polynomial in the num-
ber of disks. Furthermore, it might be desirable to
generate a disk representation that realizes a vertex-
weighted graph such that the disk radii or areas re-
flect the corresponding vertex weights, for example,

∗Institute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany. boris.klemz@student.kit.edu,

noellenburg@kit.edu, roman.prutkin@kit.edu

for value-by-area circle cartograms [7]. Clearly, there
exist vertex-weighted planar graphs that can not be
realized as disk contact graphs, and the correspond-
ing recognition problem is NP-hard even if all vertices
are weighted uniformly [2].

We examine the aforementioned scenario more
closely and explore disk contact representations for
special graph classes. We show that it is NP-hard to
decide whether a realization with uniform radii exists
even if the input graph is outerplanar and even if a
combinatorial embedding is provided. On the other
hand, we can decide in linear time whether a cater-
pillar is a disk contact graph with uniform disk radii.
If the vertex weights are not necessarily uniform, the
recognition problem becomes NP-hard even for stars,
but it can be solved in linear time for a given combi-
natorial embedding.

2 Unit disk contact graphs

In this section we are concerned with the problem of
deciding whether a given graph is a unit disk contact
(UDC) graph, that is, whether it can be realized as a
unit disk contact representation. It is known that this
is generally NP-hard for planar graphs [2], but it re-
mained open for which subclasses of planar graphs the
realizability problem can be efficiently decided and for
which subclasses NP-hardness still holds.

We show that for caterpillars we can decide the re-
alizability problem (and construct a representation if
it exists) in linear time, whereas the problem remains
NP-hard for outerplanar graphs.

Recognizing realizable caterpillars. Let G = (V,E)
be a caterpillar graph, that is, a tree for which a
path remains after removing all leaves. Let P =
(v1, . . . , vk) be this so-called inner path of G. It is
well known that six unit disks can be tightly packed
around one central unit disk, but then any two consec-
utive outer disks necessarily touch and form a triangle
with the central disk. This is not permitted in a cater-
pillar and we obtain that in any realizable caterpillar
the maximum degree ∆ ≤ 5. For ∆ ≤ 4 it is easy to
see that G can always be realized as shown in Fig. 1.

However, not all caterpillars with ∆ = 5 can be
realized. For example, two degree-5 vertices on P
separated by zero or more degree-4 vertices cannot be
realized, as they would again require tightly packed
disks inducing cycles in the contact graph.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Fig. 1: For ∆ ≤ 4 any caterpillar can be realized.

It turns out that a simple iterative pass along P
suffices to decide the realizability of G and find a re-
alization if possible. We place a disk D1 for v1 at the
origin and attach its leaf disks leftmost, that is, sym-
metrically pushed to the left with a sufficiently small
distance between them. In each subsequent step, we
place the next disk Di for vi on the bisector of the free
space, i.e. the maximum cone with origin in Di−1’s
center containing no previously inserted neighbors of
Di−1 or Di−2 and attach the leaves of Di in a left-
most and balanced way, see Fig. 2. For odd num-
bers of leaves this leads to a change in direction of
P , but by alternating upward and downward bends
for subsequent odd-degree vertices we can maintain a
horizontal monotonicity, which ensures that leaves of
Di can only collide with leaves of Di−1 and Di−2. If
we fail to place the disks correctly, we claim that no
UDC representation of G exists; otherwise we return
the constructed realization.

4 3

3 5

4

3 5

2

Fig. 2: Incremental construction of a realization. Nar-
row disks are dark gray, wide disks are light gray.

For a sketch of correctness, consider the tangent
line `i between two adjacent disks Di−1 and Di on
the inner path. We say that P is narrow at vi if some
leaf disk attached to Di−1 intersects `i; otherwise P
is wide at vi. We observe that in our construction P
gets narrow precisely when a degree-5 vertex of P is
encountered. But it is generally true in any represen-
tation that P gets narrow after a degree-5 vertex. If P
is narrow at vi this means that at most three disjoint
disks touching Di can still be placed and thus it must
be deg(vi) ≤ 4. Each vertex of degree 4 inherits the
narrow/wide status of its predecessor. Vertices with
degree 3 or less make P wide again.

This idea leads to a combinatorial characterization
(and decision algorithm) of caterpillars with a UDC
representation, based on the property that between
any two degree-5 vertices on P there must be at least
one vertex of degree at most 3.

Theorem 1 For a caterpillar G it can be decided in
linear time whether G is a UDC graph. A realization
(if one exists) can be constructed in linear time on a
Real RAM.

Hardness for outerplanar graphs. We perform a
polynomial reduction from the classic NP-complete
3SAT problem to show NP-hardness of the UDC-
realizability problem for outerplanar graphs. Here,
we sketch only the main ideas of the reduction and
refer to Klemz [8, Chapter 2] for more details.

Let ϕ be a Boolean 3SAT formula with a set U =
{x1, . . . , xn} of n variables and a set C = {c1, . . . , cm}
of m clauses, where each ci contains three literals over
U . We create the literal-clause-graph Gϕ = (U ∪ Ū ∪
C, E), where Ū is the set of negative literals over U .
The set E contains for each clause c ∈ C the edge (c, x)
if literal x occurs in c and the edge (c, x̄) if literal x̄
occurs in c. Based on Gϕ we create an outerplanar
graph G′ϕ that has a UDC representation if and only
if the formula ϕ is satisfiable.

Arguing about UDC realizations of certain sub-
graphs becomes a lot easier, if there is only a sin-
gle unique geometric representation (up to rotation,
translation and mirroring). We call such a representa-
tion rigid. Using an inductive argument, we can show
the following lemma about rigid UDC structures.

Lemma 2 A unit disk contact representation whose
UDC graph is biconnected, internally triangulated
and outerplanar is rigid.

The main building block of the reduction is a wire
gadget in G′ϕ that comes in different variations but
always consists of a rigid tunnel structure containing
a rigid bar that can be flipped into different tunnels
around its centrally located articulation vertex. Each
wire gadget occupies a square tile of fixed dimensions
so that different tiles can be flexibly put together in
a grid-like fashion. The bars stick out of the tiles in
order to transfer information to the neighboring tiles.
Some special tiles of the variable gadgets consist of
tunnels without bars or with very long bars. Finally,
we construct crossing gadgets that correctly transmit
information along both axes of a tunnel crossing. Fig-
ure 3 shows a schematic view of how the gadget tiles
are arranged to form a layout of Gϕ.

The main idea behind the reduction is as follows.
Each variable gadget contains one long horizontal bar
that is either flipped to the left (false) or to the right
(true), see Fig. 4(b). Consequently, each wire gad-
get of a literal edge connecting a variable gadget to a
clause gadget must flip its chain of bars towards the
clause if the literal is false. Finally, each clause gad-
get has one central T-shaped wire gadget, whose bar
needs to be placed inside one of the three incoming
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variable gadget

clause gadget

corner wire gadget

horizontal wire gadget

vertical wire gadget crossing gadget

x1 x1

c1

c2

x2 x2 x3 x3 x4 x4

Fig. 3: High-level structure of the construction for the
3SAT formula ϕ = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x4).

(a)

(b)

(c)

Fig. 4: (a) Clause gadget with two false inputs (top
and bottom) and one true input, (b) variable gadget
in the state false with one positive (left) and one neg-
ative literal (right), (c) detailed view of a horizontal
wire gadget with a rigid bar (black disks) inside a
horizontal tunnel (white disks).

tunnels. This is possible if and only if at least one of
the literals evaluates to true, see Fig. 4(a).

Clearly, all gadgets need to be realized by rigid unit
disk contacts. Figure 4(c) shows a close-up of a hor-
izontal wire gadget. The position of the bars inside
the tunnels admits some slack, but it does not affect
the combinatorial properties.

Finally, one needs to take care that the constructed
graph is actually outerplanar and connected. This is
not obvious, but can be done by introducing small
gaps and a modification in the attachment of the bar
in some of the horizontal wire gadgets. Moreover, the
reduction can be further modified so that it remains
valid for outerplanar graphs with a fixed embedding;
details can be found in [8].

Theorem 3 The UDC graph recognition problem is
NP-hard, even for outerplanar graphs and even if a
combinatorial embedding is given.

r(ai)

ro

Dc

Fig. 5: Reducing from 3-Partition to prove Theo-
rem 4. Input disks (dark) have to be distributed be-
tween gaps. Striped disks are separators.

3 Weighted disk contact graphs

In this section, we assume that each graph vertex has
a positive weight, which corresponds to the disk radius
of the representing disk. Deciding whether a weighted
disk contact (WDC) representation respecting this ra-
dius assignment exists is obviously at least as hard as
the UDC problem from Section 2.

Hardness for stars. Compared to Section 2, for an
arbitrary radius assignment the corresponding recog-
nition problem is hard for even simpler graph classes.

We perform a polynomial reduction from the well-
known 3-Partition problem. Given a bound B ∈ N
and a set of positive integers A = {a1, . . . , a3n} such
that B

4 < ai <
B
2 for all i = 1, . . . , 3n, deciding

whether A can be partitioned into n triples of sum B
each is known to be strongly NP-complete [5].

Let (A, B) be a 3-Partition instance. We construct
a star S as well as a radius assignment r such that S
has a disk contact representation respecting r if and
only if (A, B) is a yes-instance.

We create a central disk Dc of radius rc correspond-
ing to the central vertex vc of S as well as a fixed
number of outer disks with uniform radius ro chosen
appropriately such that these disks have to be placed
close together around Dc without touching, creating
funnel-shaped gaps of equal size; see Fig. 5. Then,
a contact representation exists only if all remaining
disks can be distributed among the gaps, and the
choice of the gap will induce a partition of the in-
tegers ai ∈ A. We shall represent each ai by a single
disk called an input disk and encode ai in its radius.
Each of the gaps is supposed to be large enough for
the input disks that represent a feasible triple to fit
inside it, however, the gaps should be too small to
contain an infeasible triple’s disk representation.

The main challenge is finding a radius assignment
satisfying the above property, although numerous ad-
ditional nontrivial geometric considerations are re-
quired to make the construction work. For example,
we require that the lower boundary of each gap is suf-
ficiently flat. We achieve this by creating additional
dummy gaps, which in any realization must be com-
pletely filled by special dummy disks, such that there
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Dc

Di+1

Di

D1 = Dj

Fig. 6: Deciding existence for Theorem 5. Gray disks
are in L before inserting Di+1. After that, the two
small gray disks will be removed from L.

are still only n gaps to distribute the input disks.
Next, we make sure that additional separator disks
must be placed in each gap’s corners to prevent left
and right gap boundaries from interfering with the in-
put disks. Finally, all our constructions are required
to tolerate a certain amount of “wiggle room”, since,
firstly, the outer disks do not touch and, secondly,
some radii cannot be computed precisely in polyno-
mial time. Again, we refer to [8, Chapter 3] for a
detailed proof.

Theorem 4 The WDC graph recognition problem is
NP-hard even for stars.

Stars with fixed embedding. If the order of the
leaves around the central vertex of the star is fixed, the
existence of a WDC representation can be decided by
tightly placing the outer disks D1, . . . , Dn−1 around
the central disk Dc iteratively. By keeping track of
possible positions of the next disk, we can achieve
O(n) runtime.

Let ri be the radius of Di, and assume that D1 is
the largest outer disk. Then, D2 can be placed next
to D1 clockwise. Suppose we have already added D2,
. . . , Di. As depicted in Fig. 6, tightly placing Di+1

next to Di might cause Di+1 to intersect with a disk
inserted earlier, even with D1. Simply testing for col-
lisions with all previously added disks would yield a
total runtime of O(n2), which we improve to O(n) by
keeping a list L of inserted disks which might be rel-
evant for future insertions. Initially, only D1 is in L.
We shall see that L remains sorted by non-increasing
radius.

When inserting Di+1, we traverse L backwards and
test for collisions with traversed disks, until we find
the largest index j < i such that rj ∈ L and ri+1 ≤ rj .
Next, we place Di+1 tightly next to all inserted disks,
avoiding collisions with all traversed disks.

First, note that Di+1 cannot intersect disks pre-
ceding Dj in L (unless Di+1 and D1 would inter-
sect clockwise, in which case we report non-existence).
Next, disks that currently succeed Dj in L will not be
able to intersect Di+2, . . . , Dn−1 and are therefore re-
moved from L. Finally, we add Di+1 to the end of L.
Since all but one traversed disks are removed during

each insertion, the total runtime is O(n). We report
existence if we can insert all disks tightly and there is
still space left.

Theorem 5 On a Real RAM, for a vertex-weighted
star S with a given embedding it can be decided in
linear time whether S is a WDC graph. A represen-
tation respecting the embedding (if one exists) can be
constructed in linear time.

4 Conclusion

We presented hardness results as well as linear-time
algorithms for variants of the weighted disk contact
graph recognition problem. An interesting open prob-
lem is the recognition of trees with a UDC represen-
tation. For more results, for example, regarding disk
contact representations in which disks have to cover
specified points, we refer to Klemz [8].
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The Complexity of the Partial Order Dimension Problem –
Closing the Gap∗

Stefan Felsner1,a Irina Mustaţă1,b Martin Pergel2,c

Abstract. The dimension of a partial order P is the
minimum number of linear orders whose intersection is P .
There are efficient algorithms to test if a partial order has
dimension at most 2. In 1982 Yannakakis [9] showed that
for k ≥ 3 to test if a partial order has dimension ≤ k is NP-
complete. The height of a partial order P is the maximum
size of a chain in P . Yannakakis also showed that for k ≥ 4
to test if a partial order of height 2 has dimension ≤ k
is NP-complete. The complexity of deciding whether an
order of height 2 has dimension 3 was left open. We show
that the problem is NP-complete.

Technically, we show that the decision problem (3DH2)

for dimension is equivalent to deciding for the existence of

bipartite triangle containment representations (BTCon).

This problem allows a reduction from a class of planar sat-

isfiability problems (P-3-CON-3-SAT(4)) which is known

to be NP-hard.

1 Introduction

Let P = (X,≤P ) be a partial order. A linear order
L = (X,≤L) on X is a linear extension of P when
x ≤P y implies x ≤L y. A family R of linear exten-
sions of P is a realizer of P if P =

⋂
i Li, i.e., x ≤P y

if and only if x ≤L y for every L ∈ R. The dimen-
sion of P , denoted dim(P ), is the minimum size of a
realizer of P . The dimension of P can, alternatively,
be defined as the minimum t such that P admits an
order preserving embedding into the dominance order
on Rt, i.e., elements x ∈ X have associated vectors
~x = (x1, . . . , xt) with real entries, such that x ≤P y
if and only if xi ≤ yi for all i, we denote this by
~x ≤dom ~y.

The 1979 edition of Garey and Johnson [4] listed
the decision problem, whether a partial order has di-
mension at most k, in their selection of twelve impor-
tant problems which were not known to be polynomi-
ally solvable or NP-complete. The complexity status
was resolved by Yannakakis [9], who used a reduc-
tion from 3-colorability to show that the problem is

∗The full version is available at arXiv:1501.01147

1Institut für Mathematik, Technische Universität Berlin,
D-10623 Berlin, Germany.

3Department of Software and Computer Science Education,
Charles Univ., Malostranské nám. 25, 11800 Praha 1, CZ.

aPartially supported by DFG grant FE-340/7-2 and ESF
EuroGIGA.

bSupported by Berlin Mathematical School (BMS).
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NP-complete for every fixed k ≥ 3. He also showed
that the problem remains NP-complete for every fixed
k ≥ 4 if the partial order is of height 2. The recog-
nition of partial orders of dimension ≤ 2 is easy, it
can even be done in linear time [6]. The gap that
remained in the complexity landscape was that for
partial orders of height 2, the complexity of deciding
if the dimension is at most 3 was unknown. In this
paper we prove NP-completeness for this case.

Dimension seems to be a particularly hard NP-
complete problem. This is indicated by the fact that
we have no heuristics or approximation algorithms to
produce realizers of partial orders that have reason-
able size. Chalermsook et al. [2] show that unless
NP = ZPP there exists no polynomial algorithm to
approximate the dimension of a partial order with a
factor of O(n1−ε) for any ε > 0, where n is the number
of elements of the input order.

2 Dimension Three and Triangle Containment

The t = 3 case of the following proposition tells us
that 3-dimensional orders are the containment orders
of homothetic triangles in the plane. The t = 2 case
is the equivalence between 2-dimensional orders and
containment orders of intervals.

Proposition 1 The dimension of a partial order P =
(X,≤P ) is at most t if and only if P is isomorphic
to the containment order of a family of homothetic
simplices in Rt−1.

Proof. “⇒” Let x→ x̂ be an order preserving embed-
ding of P to Rt. With a point x̂ in Rt associate the
orthogonal cone C(x̂) = {p ∈ Rt : p ≤dom x̂}. Note
that x ≤P y if and only if C(x̂) ⊆ C(ŷ). Consider
an oriented hyperplane H, such that for all x ∈ X
the point x̂ is in the positive halfspace H+ of H. For
x ∈ X, the intersections of the cone C(x̂) with H is
a (t − 1)-dimensional polytope ∆(x) with t vertices,
i.e., a simplex. The simplices for different elements
are homothetic and ∆(x) ⊆ ∆(y) iff C(x̂) ⊆ C(ŷ) iff
x ≤P y. Hence, P is isomorphic to the containment
order of the family {∆(x) : x ∈ X} of homothetic
simplices in H ∼= Rt−1.
“⇐” Now suppose that there is a containment order of
a family F = {∆(x) : x ∈ X} of homothetic simplices
in Rt−1 that is order isomorphic to P . Apply an affine
transformation to get a family F ′ = {∆′(x) : x ∈ X}
of regular simplices in H = Rt−1 with the same con-
tainment order. Embed H into Rt with normal vec-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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tor 1. For each ∆′(x) there is a unique point x̂ ∈ Rt
such that C(x̂) ∩H = ∆′(x). Since the containment
orders of {C(x̂) : x ∈ X} and {∆′(x) : x ∈ X} are
isomorphic we identify x → x̂ as an order preserving
embedding of P into (Rt,≤dom).

2.1 Lemmas for triangle containment

From now on we will restrict the attention to par-
tial orders of height 2. Note that these orders have a
bipartite comparability graph. Conversely, any bipar-
tite graph with black and white vertices can be seen a
height 2 order, define u < w whenever u is white, w is
black and (u,w) is an edge. Hence, partial orders of
height 2 and bipartite graphs are essentially the same.

Given a triangle containment representation of a
bipartite graph G = (V,E), let B(V ) be the set of
barycenters of the triangles (it can be assumed that all
barycenters are different). Define the β-graph β(G)
as the straight line drawing of G with vertices placed
at their corresponding points of B(V ). The following
lemma allows some control on the crossings of edges
in β(G).

Two edges are called strongly independent if they
share no vertex (i.e., they are independent) and they
are the only edges induced on their four vertices.

Lemma 1 (disjoint paths lemma) In β(G), there
is no crossing between strongly independent edges.

The proof of the lemma is very similar to the proof of
the easy direction of Schnyder’s theorem [8, Thm. 4.1].

For the reduction we construct a bipartite graph
with an embedding in the plane which has only few
crossings. Most of these crossings between edges oc-
cur locally in subgraphs that are named rotor. A rotor
has a center, which is an adjacent pair u, v of vertices.
Additionally there are some non-crossing paths pi.
Each path pi is connected to the center either with
an edge (xi, u) or with an edge (xi, v) where xi is an
end-vertex of the path. The interesting case of a rotor
is an alternating rotor. In this case it is possible to
add a simple closed curve γ to the picture such that
(1) γ contains the center and (2) there is a collection
of six paths intersecting the curve γ cyclically so that
paths leading to u and paths leading to v alternate.
Figure 1(a) shows a triangle containment representa-
tion of an alternating rotor.

In the representation of an alternating rotor there
are six ports where paths can attach to the center.The
ports alternatingly belong to the center vertices u
and v. This property is captured by the schematic
picture of an alternating rotor given in Figure 1(d).

An alternating 8-rotor is a rotor with an 8 alterna-
tion, i.e., there are eight paths p1, . . . , p8 intersecting
a simple closed curve γ that contains the center cycli-
cally in the order of indices such that paths leading
to u and paths leading to v alternate.

Tu

Tx5

Tx6 Tx2Tx1

Tx3

Tx4

p4

p6

p1

p2

x1

x2p5

p3

p4

p1

p2

p3

p5

p6

(c)(b)

(a)

Fig. 1: Part (a) shows a triangle containment represen-
tation of a rotor. Part (b) illustrates how the paths p1,
p3 and p5 together with u in the β-graph partition the
interior of Tv in three regions, where the paths p2, p4 and
p6 start. This implies that the six paths of an alternating
rotor have to use all six ports of the center. Part (c) shows
a schematized picture of an alternating rotor.

Lemma 2 There is no triangle containment repre-
sentation of an alternating 8-rotor such that in the β-
graph of the representation the eight paths p1, . . . , p8

intersect a simple closed curve around the center of
the rotor in the order of the indices.

3 The Reduction

3.1 Decision problems

Dimension 3 for Height 2 Orders (3DH2)

Instance: A partial order P = (X,<) of height 2.

Question: Is the dimension of P at most 3?

Bipartite Triangle Containment Representa-
tion (BTCon)

Instance: A bipartite graph G = (V,E).

Question: Does G admit a containment representa-
tion with a family of homothetic triangles?

From the t = 3 case of Proposition 1, it follows that
the decision problems 3DH2 and BTCon are polyno-
mially equivalent. In this section we design a reduc-
tion from P-3-CON-3-SAT(4) to show that BTCon
and, hence, also 3DH2, is NP-complete.

Recall that the incidence graph of a SAT instance Φ
is a bipartite graph whose vertices are in correspon-
dence to the clauses on one side of the partition, and
to the variables of Φ on the other side. Edges of the
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incidence graph correspond to membership of a vari-
able in a clause.

P-3-Con-3-SAT(4)

Instance: A SAT instance Φ with the additional
properties:

• The incidence graph is planar and 3-connected.

• Each clause consists of 3 literals.

• Each variable contributes to at most 4 clauses.

Question: Does Φ admit a satisfying truth assign-
ment?

The NP-hardness of P-3-CON-3-SAT(4) was shown
by Kratochv́ıl [5]. One of the first applications was
to show the hardness of recognizing grid intersection
graphs.

The advantage of working with 3-connected planar
graphs, instead of just planar graphs, is that in the 3-
connected case the planar embedding is unique up to
the choice of the outer face. Our reduction is inspired
by the reduction from [5], and even more so by the
recent NP-completeness proof for the recognition of
unit grid intersection graphs with arbitrary girth [7].

3.2 The idea for the reduction

Let Φ be an instance of P-3-CON-3-SAT(4). With Φ
we assume a fixed embedding of the incidence graph
IΦ in the plane. Our aim is to construct a bipartite
graph GΦ such that GΦ has a triangle containment
representation if and only if Φ is satisfiable. The con-
struction of GΦ is done by replacing the constituents
of IΦ by appropriate gadgets. The graph GΦ will
be very sparse and ‘almost planar’ in the sense that
few edge-contractions are sufficient to make the graph
planar. (The edges that have to be contracted are
concentrated at rotors and gates of the clause gad-
gets). The planar graph G∗Φ obtained by contract-
ing these edges is a subdivision of a graph whose
plane embedding is essentially unique. Here, essen-
tially unique means unique up to reflections of sym-
metric subgraphs that correspond to edges of IΦ. Be-
cause of Lemma 1, the essentially unique embedding
of G∗Φ has to be respected by a triangle containment
representation of GΦ.

In the construction of GΦ, every edge of the inci-
dence graph IΦ is replaced by a pair of paths of appro-
priate length. These two paths join a variable gadget
and a clause gadget. Such a pair of paths is called
an incidence strand. The two paths of an incidence
strand are two paths of a rotor at their clause end.
At this rotor the two paths are incident to different
center vertices, hence, they are distinguishable and
we may think of one of them as the green path and
the other as the yellow path. Assuming a triangle
containment representation, we can look at the two
paths of an incidence strand in the β-graph. There

they can not cross each other and they can not be
crossed by any other edge (Lemma 1). Hence if we
look at the strip bounded by the two paths with the
direction from the variable gadget to the clause gad-
get, we either see the green path on the left and the
yellow path on the right boundary or the other way
round. This yields an ‘orientation’ of the incidence
strand. The orientation is used to transmit the truth
assignment from the variable to the clause.

The notion of oriented strands is crucial for the de-
sign of the clause gadgets and variable gadgets.

3.3 The clause gadget

The clause gadget consists of a rotor surrounded by a
cycle and two paths that fix the rotor in the interior of
the cycle (magenta). The paths of the three incidence
strands which lead to the clause are also connected
to the rotor. Three vertices of the cycle have two ex-
tra edges connecting to the two paths of an incidence
strand. This construction, we call it gate, enables the
incidence strands to enter the interior of the cycle.
Figure 2 shows the clause gadget as a graph and in a
more schematic view.

vu

FALSE

FALSETRUE
`2 `3

`1

Fig. 2: Left: The graph of a clause gadget. Right:
A schematic view for the case where literals evaluate to
(F, T, F ).

The orientation of the incidence strand correspond-
ing to a literal transmits TRUE if one of the two paths
of the strand can share a port with one of the ma-
genta paths, and it transmits FALSE if the two paths
together with an adjacent magenta path have to use
three different ports of the rotor. If all 3 literals eval-
uate to FALSE we get an alternating 8-rotor, in all
other cases we can find a good assignment of the paths
to the ports of the rotor.

Proposition 2 The clause gadget (with sufficiently
long paths) has a triangle containment representation
if and only if the two paths of the incidence strand of
at least one literal are in the orientation representing
TRUE.

3.4 The variable gadget

The variable gadget corresponding to a variable x de-
pends on the number of occurrences of the variable in
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clauses. Figure 3 shows the case where the variable
has three occurrences.

T

F

Fig. 3: The variable gadget for a variable with three oc-
currences. The upper picture shows the variable gadget
as a bipartite graph. The schematic drawings below show
the two possible states of the variable gadget which cor-
respond to the two possible values of the variable.

In the Figure the combined incidence strands of two
occurrences are shown in cyan and pink. The adja-
cencies of vertices on these paths to the center vertices
of the rotor between them make an alternating rotor.
The duty of the black path is to shield two of the
ports of the rotor from outer access. There remain
two ports of the rotor where the paths of the third
occurrence (magenta ends) can connect to the cen-
ter of the rotor. Switching the orientation of the first
two occurrences also makes the strand of the third
occurrence switch orientation, i.e., the truth values
transmitted by the three strands are synchronized.
Connections between a stands of the variable gadget
and the respective strand of a clause gadget have to
be adjusted so that the correct truth value is received
at the clause. Such an adjustment consists in decid-
ing whether the pairing is (cyan-green,pink-yellow) or
(cyan-yellow,pink-green). Which of the pairings has
to be chosen depends on (1) which strand of the vari-
able gadget is in question, (2) the position of the lit-
eral in the clause, and (3) whether there is a negation
involved.

4 Extensions and open questions

In the full version we extend the result by showing
that the recognition of containment graphs of points
and translates of a fixed (unit) triangle (PUTCon)
is NP-complete. Even more, we have the following
sandwich-result: recognition of every class C of bipar-
tite graphs such that C contains all YES instances
of PUTCon and C is contained in the set of all YES
instances of BTCon is NP-hard.

From this we also obtain hardness of recognizing
bipartite graphs that admit a special type of triangle
intersection representation: The two color classes are
represented by sets ∆X = {Tx : x ∈ X} and ∆Y =

{T ∗y : y ∈ Y } of triangles such that

• Triangles in each of the families are pairwise homo-
thetic while there is a point reflection transforming
Tx into T ∗y .

• (x, y) ∈ E if and only if Tx ∩ T ∗y 6= ∅.
• Within each of the two families ∆X and ∆Y there

is no containment.

The reduction shows that maximum degree at least
5 is enough to make BTCon hard. From Schnyder’s
work [8] we know that bipartite graphs where the de-
gree in one of the color classes is 2 are yes instances
for BTCon if and only if they are incidence orders of
planar graphs. What about maximum degree 3?

• What is the complexity of deciding whether a
bipartite graph of maximum degree 3 admits a
BTCon representation?

We can also restrict the class of inputs to planar bi-
partite graphs. It is known that the incidence order of
vertices and faces of a 3-connected planar graph is of
dimension 4, see [1], moreover there are outerplanar
graphs whose incidence order of vertices and faces is
of dimension 4, see [3]. Is it hard to decide whether a
planar bipartite graph is of dimension 3? Or in terms
of triangle containments:

• What is the complexity of deciding whether a pla-
nar bipartite graph admits a BTCon representa-
tion?
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Flow Diagrams for Trajectory Analysis

Kevin Buchin∗ Maike Buchin† Joachim Gudmundsson‡ Michael Horton‡ Stef Sijben†

Abstract

We propose movement flow diagrams as a concept to
provide a summary for a large number of trajectories
and study the problem of computing compact flow di-
agrams. We show that for a large number of trajecto-
ries it is unlikely that efficient algorithms to compute
a flow diagram of minimum size exist. More specifi-
cally, the problem is W [1]-hard if the number of tra-
jectories is taken as a parameter. For a small number
of trajectories we present efficient algorithms.

1 Introduction

More and more movement data are recorded in a wide
range of applications like sports, traffic analysis and
behavioral ecology. In particular, recent advances in
tracking technology have led to a large amount of col-
lective movement being recorded. This leads to the
question of how to represent these data compactly.

For a single trajectory a common way to obtain a
compact representation is simplification. Trajectory
simplification typically focusses on determining a sub-
set of the data that represents the trajectory well in
terms of the location over time [9]. If the focus is less
on the location as such but other characteristics of the
trajectory then segmentation [6] is used to partition
a trajectory into a small number of subtrajectories,
where each subtrajectory is homogeneous with respect
to some characteristic. This allows to represent a tra-
jectory compactly as a sequence of characteristics.

For several trajectories other techniques apply. For
a set of similar trajectories one representative can be
computed [4]. Less similar trajectories may be cap-
tured by a grouping structure [5]. These approaches
again focus on location over time. A large set of
trajectories might contain very unrelated trajectories,
hence clustering may be used. Clustering on complete
trajectories will not represent information about in-
teresting parts of trajectories.

We therefore are interested in generalizing the con-
cept of segmentation to sets of trajectories. Consider
the trajectories in Fig. 1. Each individual trajectory
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Figure 1: A set of trajectories with some stops and a
flow diagram representing the stops.

has segments of directed movement and stops. The
flow diagram on the right gives a joint representation
of these trajectories. Travel phases are not modelled
in the flow diagram, since they are not relevant in this
example. If the location of the stops is not relevant
we could merge the nodes S4 and S5.

We study the following problem: Given a group of
trajectories, how to give a compact representation of
their movement characteristics? For this the trajecto-
ries are segmented according to given criteria, and the
resulting segmentations are represented in one flow
diagram. Given a group of trajectories and a set of
criteria, our goal is to find a smallest flow diagram.

After discussing preliminaries and related work, we
show in Section 3 that finding a smallest flow diagram
is W [1]-hard if the number of trajectories is taken as
a parameter. In Section 4 we present polynomial-time
algorithms for a fixed number of trajectories.

2 Preliminaries

A trajectory T of size n is a sequence of n positions
in space and time. A subtrajectory T ′ of T is a subse-
quence of T . Let C1, . . . , Ck be k criteria, i.e. boolean
functions on the set of subtrajectories. These criteria
are often geometric in nature. A segmentation of T
according to the criteria is a partition into subtrajec-
tories, such that consecutive subtrajectories overlap
in exactly one of the n positions and each subtrajec-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

121



31st European Workshop on Computational Geometry, 2015

tory fulfils a criterion. An optimal segmentation is
one with a minimal number of subtrajectories.

Now let τ1, . . . , τm be m trajectories of size (at
most) n each. We propose to represent a joint seg-
mentation of the trajectories by a (movement) flow
diagram. A flow diagram is a labelled directed acyclic
graph (DAG) where the node labels are criteria except
for two nodes labelled s and t respectively. A segmen-
tation (given as a sequence of criteria) is represented
in a flow diagram if it appears as a simple path from
s to t, where s is concatenated at the beginning and t
at the end of the sequence. Our goal is to find a min-
imal flow diagram that represents at least one valid
segmentation for each of a set of m trajectories. As
size of the flow diagram, which we aim to minimize,
we consider its number of nodes. Note that this prob-
lem is “two-fold” in the sense that it asks to find both
the segmentations of a group of trajectories, and the
flow diagram that represents these.

Note that a criterion might make a statement about
just one or about several trajectories. In the first case
we can use the corresponding node of the flow diagram
to represent segments from different trajectories even
if they do not correspond in space or time (e.g., merg-
ing stops S4 and S5 in Fig. 1). In the second case we
may require a correspondence in space and/or time
for all segments represented by a certain node.

Criteria-based segmentation for one trajectory has
been discussed in a series of papers for different types
of criteria: decreasing monotone criteria [6, 7], non-
monotone criteria [3], and stable criteria [1]. Here,
criteria are distinguished by how often they “change
validity”. A criterion is decreasing monotone: if a
segment fulfils the criterion, then so does each sub-
segment. Increasing monotone is defined analogously,
and stable generalizes both of these concepts. Here,
we consider general and decreasing monotone criteria.

The efficiency of segmentation algorithms also de-
pends on the efficiency to check criteria on subtra-
jectories. Here, we distinguish between computation
and update cost. That is, the time to compute a cri-
terion on a subtrajectory without and with knowing
the result on a subtrajectory of size one smaller.

Another important distinction is between fixed and
variable parameter criteria, i.e., criteria which (do
not) allow to choose parameters. For instance, lo-
cation within disc is a variable criterion, and criteria
on attribute ranges can be both variable or fixed.

For multiple trajectories we distinguish dependent
and independent criteria. A criterion is independent
if checking whether a set of subtrajectories fulfils it
can be done for each subtrajectory independently. A
similar distinction of computation and update cost,
and fixed and variable parameters was made in [7].

In contrast to criteria-based segmentation, a recent
paper studies segmentation based on a parameterized
movement model [2].

3 Hardness Results

Flow Diagram (FD)
Instance: A set T of m trajectories, each of length
≤ n, a set C of criteria, and a positive integer λ.
Question: Does there exist a flow diagram with ≤ λ
nodes that represents a valid segmentation w.r.t. C
for each trajectory in T ?

We show that the problem mentioned above is NP-
hard and that the problem is W [1]-hard in the number
of trajectories. Unless W [1] = FPT this rules out
the existence of algorithms with time complexity of
O(f(m) · (nk)c), for some constant c. To show this we
describe two reductions: one from Shortest Common
Supersequence and one from Set Cover problem.

Reduction from SCS

Shortest Common Supersequence (SCS)
Instance: A set of strings R = {r1, r2, . . . , rk} over
an alphabet Σ, a positive integer λ.
Question: Does there exist a string s ∈ Σ∗ of length
≤ λ that is a supersequence of each string in R?

This problem has been extensively studied (see [8]
and references therein). In particular, the SCS prob-
lem parameterized in the number of strings is W [1]-
hard even over a constant-size alphabet [11] and the
SCS problem over a binary alphabet is NP-hard [12].

Given an instance I = (R = {r1, . . . , rm},Σ, λ) of
SCS construct an instance of FD as follows. Each
character cl in Σ corresponds to a criterion Cl. Each
string ri corresponds to a trajectory τi, where τi[j]
fulfils cri[j] and no other criteria.

An algorithm for FD outputs a flow diagram F of
size f . Given F one can compute a linear sequence
of the nodes of F using topological sort, as shown in
Fig. 2a. The linear sequence has f − 2 nodes (omit-
ting the start and end nodes of F ) and its node la-
bels are a supersequence of each string in R. It fol-
lows that there exists a flow diagram for the instance
(T = {τ1, . . . , τm}, C = {C1, . . . , C|Σ|}) of size ≤ λ+2
if and only if the SCS instance has a solution of size
≤ λ. Note that F contains a linear sequence of nodes
(after topological sort), which correspond to a super-
sequence, and a set of directed edges. Consequently a
solution for the FD problem can easily be transformed
to a solution for the SCS problem, but not vice versa.

Theorem 1 The FD problem parameterized in the
number of trajectories is W [1]-hard even when the
number of criteria is constant.

Theorem 2 The FD problem is NP-hard even when
the number of criteria is two.
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Figure 2: Examples of flow diagrams produced by the
reductions: (a) From Shortest Common Superse-
quence. (b) From Set Cover.

Reduction from Set Cover

Set Cover (SC)
Instance: A set E = {e1, . . . , em}, a set S =
{S1, . . . , Sn} of subsets of E and a positive integer λ.
Question: Does there exist a set of ≤ λ items in S
whose union equals E?

Set Cover is well known to be NP-hard, and also
hard to approximate: For any 0 < c < 1/4, it cannot
be approximated within a factor of c logm in polyno-
mial time unless NP ⊆ DTIME(mpolylogm) [10].

Given an instance I = (E = {e1, e2, . . . , em},S =
{S1, S2, . . . , Sn}, λ) of Set Cover construct an instance
of FD as follows. Each item ei in E corresponds to
a trajectory τi of length two. Each subset Sj corre-
sponds to a criterion Cj . If a Sj contains ei then the
whole trajectory τi fulfils criterion Cj .

An algorithm for FD given an instance outputs a
flow diagram F of size f , as depicted in Fig. 2b. Given
F , the labels of its interior nodes correspond to a set
of subsets in S whose union is E. F has ≤ λ+2 nodes
if and only if there are ≤ λ subsets in S cover E.

Theorem 3 The FD problem is NP-hard even when
the length of every trajectory is 2.

Theorem 4 For any 0 < c < 1/4, the FD problem
cannot be approximated within a factor of c logm in
polynomial time unless NP ⊆ DTIME(mpolylogm).

4 Algorithms

In this section, we present dynamic programming al-
gorithms that compute the smallest flow diagram rep-
resenting a set of m trajectories of length n with re-
spect to a set of k criteria. Let T (m,n) be the cost of
testing whether a set of m subtrajectories of length at
most n fulfils a criterion. First, we present an algo-
rithm that solves the general case. Then, we present
more efficient algorithms for several classes of criteria.

General criteria

We represent all prefixes of the trajectories as
vertices in a nm size regular grid, where the
vertex with coordinates (x1, x2, . . . , xm), 1 ≤
x1, . . . , xm ≤ n, represents the trajectory prefixes
(τ1[1, x1], τ2[1, x2], . . . , τm[1, xm]), where τi[1, xj ] de-
notes the subtrajectory of the first xj positions. We
construct a graph G on these vertices to represent
the valid flow diagrams as follows: An edge between
two vertices v = (x1, . . . , xm) and v′ = (x′1, . . . , x

′
m),

labelled by some criterion ci, represents adding (at
most) one new segment τj [xj , x

′
j ] fulfilling ci for each

j. The edge must have xj ≤ x′j for each j ∈
{1, . . . ,m} and there must be at least one j for which
xj < x′j . Furthermore, for all segments τj [xj , x

′
j ] such

that xj < x′j , the segment must fulfil the criterion ci.
If xj = x′j , then this edge adds no new segment to τj .
This ensures that the flow diagram represents valid
segmentations.

Let vs be the vertex with coordinates (1, . . . , 1) and
let there be an additional vertex vt outside the grid.
Now, a path in G from vs to a vertex v represents a
valid segmentation of some prefix of each trajectory,
and defines a flow diagram that describes these seg-
mentations in the following way: The empty path rep-
resents the flow diagram consisting only of the start
node s. Every edge of the path adds one new node
to the flow diagram, labelled by the criterion that the
covered segments fulfil, i.e. the label of the edge in G.
Also, the flow diagram gets an edge from every node
representing a predecessor of a covered segment, or
from s if a covered segment is the first in a segmenta-
tion. If v = vt, the target node t is added to the flow
diagram, together with its incoming edges.

Lemma 5 A smallest flow diagram for a set of tra-
jectories is represented by a shortest vs–vt path in G.

G has nm+1 vertices. There is at most one edge per
criterion between a pair of vertices, so G has O(n2mk)
edges. For each edge, we need to test whether the
represented subtrajectories fulfil the criterion.

Theorem 6 A smallest flow diagram for m trajec-
tories of length n and k criteria can be computed in
O(n2mk · T (m,n)) time.

Decreasing monotone and independent criteria

If all criteria are decreasing monotone and indepen-
dent, we can avoid constructing the full graph and
thus speed up the algorithm.

From a given vertex with coordinates (x1, . . . , xm),
we can greedily move as far as possible along the tra-
jectories, since the monotonicity guarantees that this
never leads to a solution that is worse than one that
generates shorter segments. For a given criterion Cj ,
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we can compute for each trajectory τi independently
the maximum x′i such that τi[xi, x

′
i] satisfies Cj . This

produces coordinates (x′1, . . . , x
′
m) for a new vertex,

which is optimal if Cj is selected as the next criterion.
By considering all criteria we obtain k new vertices.
However, unlike the case with a single trajectory pre-
sented in [6], there is not necessarily one vertex that
is better than all others (i.e. largest ending position),
since the vertices are not totally ordered. Instead, we
consider all vertices not dominated by another vertex.

Let Vi be the vertices of G that are reachable from
vs in exactly i steps, and let M(V ) := {v ∈ V |
no vertex u ∈ V dominates v} be the maximal ver-
tices of a vertex set V . Then a shortest vs–vt path
can be computed by computing M(Vi) for increasing
i, until a value of i is found for which vt ∈M(Vi).

Lemma 7 For each i ∈ {1, . . . , ` − 1}, every vertex
in M(Vi) is reachable in one step from a vertex in
M(Vi−1). Here, ` is the distance from vs to vt.

M(Vi) is computed by computing the farthest
reachable vertex for each v ∈ M(Vi−1) and criterion,
thus yielding a set Di of O(nm−1k) vertices, which
contains M(Vi) by Lemma 7. The total size of all Di

(0 ≤ i ≤ ` − 1) is O(knm) and we can compute all
M(Vi) in O((k +m)nm) time.

Theorem 8 A smallest flow diagram for m tra-
jectories of length n and k independent and de-
creasing monotone criteria can be computed in time
O(mnk · T (1, n) + (k +m)nm).

Decreasing monotone and dependent criteria

We can use the same idea as described in the previous
section, but for a given starting vertex v and criterion
C, there is not a single vertex v′ that dominates all
vertices reachable from v using this criterion. Instead,
there may be up to Θ(nm−1) maximal reachable ver-
tices from v for criterion C. The total size of all Di

(0 ≤ i ≤ `− 1) is O(kn2m−1), leading to this result:

Theorem 9 A smallest flow diagram for m trajecto-
ries of length n and k decreasing monotone criteria
can be computed in O(kn2m−1T (m,n) +mnm) time.

Fixed criteria

We propose a dynamic programming algorithm that
computes the optimal flow diagram for fixed criteria,
using a table with n levels representing the time steps,
each of size km, representing all combinations of crite-
ria a set of m subtrajectories can fulfil. The cell with
coordinates (i, c1, . . . , cm) stores the minimal flow di-
agram of the first i observations of each trajectory,
ending with each τj in criterion Ccj . To compute an
entry at level i+ 1, each state from the previous time

step is tested as a predecessor and the one yielding
the smallest flow diagram is selected.

Theorem 10 A smallest flow diagram for m trajec-
tories of length n and k fixed criteria can be computed
in O(k2m ·mn) time, assuming T (1, 1) = O(1).
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Homotopy Measures for Representative Trajectories∗

Erin Chambers† Irina Kostitsyna‡ Maarten Löffler§ Frank Staals§

Abstract

An important task in trajectory analysis is defining a
meaningful representative for a set of similar trajec-
tories. How to formally define and find such a repre-
sentative is a challenging problem. We propose and
discuss two possible definitions. In both definitions
we use only the geometry of the trajectories, that is,
no temporal information is required, and measure the
quality of the representative using the homotopy area
between the representative and the input trajectories.
Computing an optimal representative turns out to be
NP-hard for one of the definitions, whereas the other
definition allows efficient algorithms for a reasonable
class of input trajectories.

1 Introduction

Extracting a meaningful representative trajectory
from a collection of similar trajectories is an impor-
tant open problem in GIS that has recently received
considerable attention [1–3, 9–11, 13, 14]. Fig. 1 illus-
trates our setting, where trajectories are embedded in
the plane; the goal is to find a good representative
that captures important features shared by most of
the input curves.

In [4], Buchin et al. investigate whether a reason-
able notion of a median exists that depends only on
the intersections in a set of trajectories, while essen-
tially not using the geometry in any way. The authors
also incorporate a notion of the topology of the under-
lying space, by placing obstacles in large open regions
and restricting the class of trajectories to the same
homotopy type. They conclude that while computa-
tion of the median is possible to some extent, some
notion of geometry and topology seems necessary to
handle practical situations.

In this paper, we include some geometric and topo-
logical information in the selection of a representative

∗E.C. is supported by the National Science Foundation un-
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are supported by the Netherlands Organisation for Scientific
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‡Department of Mathematics and Computer Science, TU

Eindhoven; i.kostitsyna@tue.nl.
§Department of Computing and Information Sciences,

Utrecht University; [m.loffler,f.staals]@uu.nl.

Figure 1: A set of similar trajectories, and the desired
representative trajectory.

curve, namely, the area of the faces in the arrange-
ment of trajectories. We use the homotopy area mea-
sure from Chambers and Wang [7], which measures
similarity by the area swept by a minimum homotopy
between two input curves. This notion is particu-
larly attractive in our setting as it implicitly penal-
izes a representative trajectory for missing large re-
gions without making it necessary to artificially place
obstacles in the ambient space.

Clearly, if the trajectories considered are completely
dissimilar, and thus have no important common fea-
tures, there is also no good representative trajectory
for them. Therefore, it makes sense to consider only
trajectories that have the same general “shape”.

Problem Statement. We are given a set of tra-
jectories T = {T1, .., Tn}, which for the purposes of
this paper are simply curves in the plane. We wish to
compute a single trajectory ç∗ that best represents
all trajectories in T . As we will use homotopy area to
measure the quality of ç∗ we require that: (i) all tra-
jectories start and end at the same points, (ii) each
individual trajectory Ti is simple, that is, it has no
self-intersections (or else homotopy area is not well
defined), and (iii) the start and end points lie in the
outer face of the arrangement of trajectories.

We require that ç∗ also goes from the common
start point to the common end point and has the fol-
lowing properties: (a) ç∗ should consist of segments
of the input trajectories, (b) ç∗ should be simple,
(c) ç∗ should use each segment in the correct di-
rection (i.e., the same direction as used in the input
trajectory), and (d) all segments of a trajectory that
appear on ç∗ should appear in the correct order.

Among all possible output trajectories that sat-
isfy these requirements, we wish to select one that
represents T best. We measure this by the dis-
tance between the (candidate) median ç and the
trajectories in T . Let d(ç, T ) be the homotopy
area between ç and a trajectory T ∈ T . We con-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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a1 a2 a7a6a5a4a3

Figure 2: An illustration of the NP-hardness reduction
from Partition. The purple curve represents the partition
B = {a2, a3, a6, a7} and G = {a1, a4, a5}.

sider two variants: minimizing the maximum dis-
tance M (ç, T ) = maxT∈T d(ç, T ) between ç and
the trajectories in T , and the sum of the distances
D(ç, T ) =

∑
T∈T d(ç, T ) between ç and the tra-

jectories in T . If T is clear from the context we will
write M (ç) = M (ç, T ) and D(ç) = D(ç, T ).

Results. We show that the first variant considered,
minimizing the maximum distance, is NP-hard, even
if the trajectories are all x-monotone. For the second
variant we show that if the trajectories have a similar
“shape” then we can compute a representative min-
imizing D efficiently. Quite surprisingly, our results
show that under reasonable constraints, the simple
median from Buchin et al. [4] that does not incorpo-
rate areas in any way, remains the optimal choice for
minimizing D .

2 Minimizing the Maximum Distance M

We first show that the problem of minimizing the
maximum distance between the median trajectory
and all other trajectories in NP-hard, even for the case
of a constant number of x-monotone input curves.
Our reduction proceeds from the Partition problem,
which, given a set A = {a1, .., an} of positive inte-
gers, asks if there is a partition of A into sets B
and G such that

∑
(B) =

∑
(G) =

∑
(A)/2, where∑

(X) =
∑
a∈X a.

Given the set A, we construct two x-monotone tra-
jectories (curves) TB and TG such that the faces be-
tween successive intersections have area equal to some
ai ∈ A. See Fig. 2 for an illustration.

Any candidate trajectory ç corresponds to a par-
tition of A into B and G: ai ∈ B if and only if ç
uses the edges of TB that bound the face correspond-
ing to ai. It follows that the homotopy area between

ç and TB is exactly
∑

(B). Similarly, the homotopy
area between ç and TG is

∑
(G), and thus M (ç) =

max {∑(B),
∑

(G)}. Let ç∗ be a trajectory minimiz-
ing M . We have that M (ç∗) =

∑
(A)/2 if and only

if A can be partitioned such that
∑

(B) =
∑

(G). It
follows that minimizing M is (weakly) NP-hard.

Figure 3: The trajectory graph Γ. In this example, Γ is
acyclic.

Figure 4: The simple median for a set of x-monotone
trajectories.

3 Minimizing the Sum of Distances D

We now describe how to compute a representative
that minimizes D for a set of trajectories T whose
shape is similar. As a warmup, we consider the case in
which the trajectories in T are x-monotone. We then
show that this approach extends to the case where
the trajectory graph Γ is an arbitrary acyclic graph.
The set of vertices of Γ consists of the start point, the
end point, and the intersection points of the trajec-
tories. An edge in Γ then corresponds to a piece of a
trajectory, directed along that trajectory. See Fig. 3.

3.1 x-Monotone Trajectories

In this section we will show that for x-monotone tra-
jectories, the simple median, as defined by Buchin et
al. [4], also minimizes the sum of the homotopy ar-
eas D . At the starting point s, the simple median
starts at the n/2th curve (ranking the trajectories by
their y-coordinate just after s). It switches at every
intersection point it encounters, thus staying on the
n/2th trajectory. See Fig. 4. Throughout this section
we will consider the trajectories as functions mapping
time, represented by the x-axis, to R1, represented by
the y-axis. Thus we use T (t) = T (x) to denote the
y-coordinate of the trajectory T at time t = x.

To show that the simple median ç∗ minimizes D
we write D(ç) as an integral

∫
f(t) dt over time t. At

any individual time t, f(t) represents the sum of the
lengths of a set of intervals along a vertical line. All
intervals share a common endpoint (the value of ç at
time t). The total length of these intervals is minimal
when ç has the same number of trajectories above
and below it, that is, when it is the simple median at
time t.
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Lemma 1 The simple median minimizes

F (ç) =

∫

t

∑

T∈T
|ç(t)− T (t)|dt.

Proof. Let y1, .., yk denote the intersection points of
the trajectories with a vertical line `x with x = t.
Any valid trajectory uses one of the points ti at time
t. We now show that the point yh, with h = dn/2e,
minimizes F ′(y) =

∑
T∈T |y − T (x)| at x = t. Since

the simple median ç∗ is on the hth trajectory at any
time t, it thus follows that ç∗ minimizes F .

Assume by contradiction that the point that mini-
mizes F ′ at x is on ti+1, with i > h. The case i < h is
symmetric. We have F ′(ti+1) =

∑
j>i+1(tj − ti+1) +∑

j<i+1(ti+1 − tj), and F ′(ti) = F ′(i + 1) + (n −
i)(ti+1 − ti) − i(ti+1 − ti). Since i > h = dn/2e it
follows that F ′(i) < F ′(i+ 1). Contradiction. �

Given a point p let ω(p, γ) denote the winding num-
ber of p with respect to a closed curve γ.

Lemma 2 Let T be a set of x-monotone trajectories.
The simple median minimizes D .

Proof. Let ç be a candidate median trajectory, and
let γT be the closed curve obtained by concatenat-
ing ç and the reverse of T . All trajectories are x-
monotone and have consistent winding numbers, so
for any point p any winding number ω(p, γT ) is either
zero, plus one, or minus one. We then apply Lemma
4.3 of Chambers et al. [7] and obtain

D(ç) =
∑

T∈T
d(ç, T ) =

∑

T∈T

∣∣∣∣
∫

p∈R2

ω(p, γT ) dp

∣∣∣∣

=
∑

T∈T

∫

x∈R

∫

y∈R
|ω((x, y), γT )|dy dx

=

∫

x∈R

∑

T∈T

∫

y∈R
|ω((x, y), γT )|dy dx.

A vertical line `x with x-coordinate x intersects (the
faces of) Γ in a set of intervals I(x) = I1, .., Ik. All
points (values) in an interval Ii have the same winding
number ω(Ii, γT ) with respect to a curve γT . So,

D(ç) =

∫

x∈R

∑

T∈T

∑

I∈I(x)

∫

y∈I
|ω((x, y), γT )|dy dx

=

∫

x∈R

∑

T∈T

∑

I∈I(x)
|ω(I, γT )| · |I|dx.

Since the trajectories are x-monotone, each trajec-
tory T ∈ T intersects a vertical line `x in exactly
one point, namely (x, T (x)). Let JT ⊆ `x be the in-
terval bounded by ç(x) and T (x). It follows that
|ω(I, γ)| = 1 if I ⊆ JT and zero otherwise, and thus

D(ç) =

∫

x∈R

∑

T∈T
|ç(x)− T (x)|dx = F (ç).

The lemma now follows from Lemma 1. �

From Lemma 2 it follows that we can compute a
median trajectory using the algorithm of Buchin et
al. [4] in O((N + k)α(N) log(N)) time, where N is
the total complexity of the input trajectories, and k
is the output complexity (which is at most O(N2)).

3.2 Extending to Arbitrary Acyclic Γ

The arguments from the previous section can be ex-
tended to the case where the trajectory graph is
acyclic. We observed that the function F in Lemma 1
is an integral over time, summing the lengths of inter-
vals along a vertical line. It is easy to see that this gen-
eralizes to a sum of intervals along an arbitrary time-
varying curve. More formally, let ` : [0, 1]×[0, 1]→ R2

be a continuous map such that at any time t, the
curve `(t) =

⋃
z∈[0,1] `(t, z) intersects each trajectory

from T exactly once. The curve ç` that at any time
t corresponds to the n/2th intersection point on `(t)
minimizes the function

G(ç) =

∫

t∈[0,1]

∑

T∈T
len
(
`(t),ç(t), T (t)

)
dt,

where len(C, p, q) denotes the length along curve C
from p to q. Additionally, we observe that for any two
maps `1 and `2, these median curves ç1 and ç2 are
the same curve: the simple median ç∗. To see this,
consider sweeping `1 and `2 over Γ, while maintaining
the edges e1 and e2 of Γ currently containing ç1 and

ç2, respectively. Initially, the ç1 and ç2 use the
same outgoing edge of s, hence e1 = e2. The key
insight is now that ei changes only if `i sweeps over
the end point v of ei. Conversely, if `i sweeps over a
different vertex of Γ, the number of curves intersecting
`i before and after çi does not change. This implies
that ç1 and ç2 both use the same outgoing edge of
v. Repeating this argument gives us that ç1 = ç2 =

ç∗. Therefore, we conclude:

Lemma 3 The simple median minimizes G(ç).

Analogous to Lemma 2 we now rewrite D(ç) as
an integral over time. However, instead of directly
mapping time t to a vertical line x = t, we map every
time t to a curve `(t) that intersects each trajectory
exactly once. Such a (continuous) map exists, since
the trajectories do not contain self intersections, and
Γ is acyclic.

It then again follows that all winding numbers are
zero, one, or minus one, and thus we can obtain
D(ç) = G(ç). The following result then follows
from Lemma 3.

Lemma 4 Let T be a set of trajectories for which Γ
is acyclic. The simple median minimizes D .

Thus, we can again compute a median trajectory
using the algorithm of Buchin et al. [4]. Hence:

127



31st European Workshop on Computational Geometry, 2015

t
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Figure 5: A corridor.

Theorem 5 Let T be a set of trajectories with to-
tal complexity N and for which Γ is acyclic. A
trajectory that minimizes D can be computed in
O((N + k)α(N) log(N)) time, where k is the com-
plexity of the resulting trajectory.

4 Future Work

Throughout this paper, we have assumed that the tra-
jectories are constrained to be similar, so that the un-
derlying intersection graph is x-monotone or acyclic.
When the trajectory graph is not acyclic, we propose
a two phase approach. In the first phase we compute
a corridor, capturing the global shape of the trajecto-
ries. In the second phase we compute a concrete curve
representing the trajectories in the corridor. The con-
ceptual existance of a corridor is justified by the as-
sumption that the input trajectories are similar. We
can formalize the notion of a corridor as follows.

Let M be a simply connected continuous topolog-
ical space, let f : M → R2 be a continuous function
mapping M onto R2, and let TM = f−1(T ) denote
the set of trajectories lifted ontoM using f−1. We de-
fine a corridor to be such a pair (M, f) for which the
trajectory graph ΓM of the trajectories TM is acyclic.
Fig. 5 shows an example.

We can find a representative for the set of trajecto-
ries TM using Theorem 5. What remains is to find and
compute a corridor (M, f). We plan to investigate
computing a corridor in future work. We will con-
sider lifting the trajectories to a covering space where
the underlying graph is acyclic. As long as this lifting
to a new space is locally consistent and preserves the
fact that any two of the trajectories are homotopic,
this allows lifting the homotopy area measure. How-
ever, as there are many possible ways to lift, further
investigation of the trade-offs involved is necessary.

We focused on using the homotopy area to measure
the distance between the trajectories. There are many
other alternative measures that take topology and ge-
ometry into account. Homotopy width (or homotopic
Fréchet distance) [8] and homotopy height [5, 12] are
obvious options, as is homology area [6], although it
is unclear if any of these are tractable or useful in
practice.
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veira, C. Wenk, and L. Wiratma. Median trajectories.
Algorithmica, 66(3):595–614, 2013.

[5] E. W. Chambers and D. Letscher. On the height of
a homotopy. In CCCG, pages 103–106, 2009.

[6] E. W. Chambers and M. Vejdemo-Johansson. Com-
puting minimum area homologies. Computer Graph-
ics Forum, pages n/a–n/a, 2014.

[7] E. W. Chambers and Y. Wang. Measuring similarity
between curves on 2-manifolds via homotopy area. In
Proc. 29th Ann. Symp. on CG, pages 425–434. ACM,
2013.

[8] E. W. Chambers, ric Colin de Verdire, J. Erickson,
S. Lazard, F. Lazarus, and S. Thite. Homotopic frchet
distance between curves or, walking your dog in the
woods in polynomial time. CG, 43(3):295 – 311, 2010.

[9] S. Durocher and D. Kirkpatrick. The projection me-
dian of a set of points. CG, 42(5):364 – 375, 2009.

[10] S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and
M. Ghil. Probabilistic clustering of extratropical cy-
clones using regression mixture models. Climate Dy-
namics, 29(4):423–440, 2007.

[11] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proc. 5th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, pages 63–72, 1999.

[12] S. Har-Peled, A. Nayyeri, M. Salavatipour, and
A. Sidiropoulos. How to walk your dog in the moun-
tains with no magic leash. In Proc. 28th Ann. Symp.
on CG, pages 121–130. ACM, 2012.

[13] J. Lee, J. Han, and K. Whang. Trajectory cluster-
ing: a partition-and-group framework. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
593–604, 2007.

[14] M. Vlachos, D. Gunopulos, and G. Kollios. Discov-
ering similar multidimensional trajectories. In Proc.
18th Int. Conf. Data Engin., pages 673–684, 2002.

128



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Central Trajectories

Marc van Kreveld∗ Maarten Löffler∗ Frank Staals∗

Abstract

We study the problem of computing a suitable representa-
tive of a set of similar trajectories. To this end we define a
central trajectory C , which consists of pieces of the input
trajectories, switches from one entity to another only if
they are within a small distance of each other, and such
that at any time t, the point C(t) is as central as possible.
We measure centrality in terms of the radius of the smallest
disk centered at C(t) enclosing all entities at time t, and
discuss how the techniques can be adapted to other mea-
sures of centrality. For entities moving in R1 we show that
an optimal central trajectory C representing n trajectories,
each consisting of τ edges, has complexity Θ(τn2) and can
be computed in O(τn2 log n) time. For entities moving in
Rd with d ≥ 2, the complexity of C is at most O(τn5/2)
and can be computed in O(τn3) time.

1 Introduction

A trajectory is a sequence of time-stamped locations in
the plane, or more generally in Rd. Trajectory data is
obtained by tracking the movements of e.g. animals [1,
4, 6], hurricanes [8], traffic [7], or other moving entities
[5] over time. Large amounts of such data have recently
been collected in a variety of research fields. As a result,
there is a great demand for tools and techniques to analyze
trajectory data.

We study representing a set of (similar) trajectories by a
single representative trajectory that captures the defining
features of all trajectories in the set. Representative trajec-
tories are useful for example in clustering. When choosing
a representative trajectory for a group of similar trajecto-
ries, the first obvious choice would be to pick one of the
trajectories in the group. However, one can argue that no
single element in a group may be a good representative,
e.g. because each individual trajectory has some prominent
feature that is not shared by the rest (see Fig. 1(a)), or no
trajectory is sufficiently in the middle all the time. On the
other hand, it is desirable to output a trajectory that does
consist of pieces of input trajectories, because otherwise the
representative trajectory may display behaviour that is not
present in the input, e.g. because of contextual information
that is not available to the algorithm (see Fig. 1(b)).

∗Department of Information and Computing
Sciences, Universiteit Utrecht, The Netherlands,
{m.j.vankreveld|m.loffler|f.staals}@uu.nl. M.L.
and F.S. are supported by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.021.123 and 612.001.022, respectively.

(a)

(b)

Figure 1: (a) Every trajectory has a peculiarity that is not
representative for the set. (b) Taking the pointwise average
of a set of trajectories may result in one that ignores context.

Central trajectories. Buchin et al. [2] consider the prob-
lem of computing a median trajectory for a set of trajecto-
ries without time information. Their method considers the
trajectories as curves in the plane, and produces a trajectory
(curve) that consists of pieces of the input. In this work,
we focus on incorporating time into the representative. Ide-
ally, we would output a trajectory C such that at any time t,
C(t) is the point (entity) that is closest to its farthest entity.
Unfortunately, when the entities move in Rd for d > 1,
this may cause discontinuities. Such discontinuities are
unavoidable: if we insist that the output trajectory consists
of pieces of input trajectories and is continuous, then in
general, there will be no opportunities to switch from one
trajectory to another, and we are effectively choosing one
of the input trajectories again. At the same time, we do not
want to output a trajectory with arbitrarily large discontinu-
ities. An acceptable compromise is to allow discontinuities,
or jumps, but only over small distances, controlled by a pa-
rameter ε. We note that this problem of discontinuities also
shows up for representatives without time information and
entities moving in Rd, with d ≥ 3, because the traversed
curves generally do not intersect.

Problem description. We are given a set X of n enti-
ties, each moving along a piecewise linear trajectory in
Rd consisting of τ edges. We assume that all trajecto-
ries have their vertices at the same times t0, .., tτ . For
an entity σ, let σ(t) denote the position of σ at time t.
With slight abuse of notation we will write σ for both en-
tity σ and its trajectory. At a given time t, we denote
the distance from σ to the entity farthest away from σ by
Dσ(t) = D(σ, t) = maxψ∈X ‖σ(t)ψ(t)‖, where ‖pq‖ de-
notes the Euclidean distance between points p and q in Rd.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a preprint
rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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For ease of exposition, we assume that the trajectories are
in general position: that is, no three trajectories intersect in
the same point, and no two pairs of entities are at distance
ε from each other at the same time.

A trajectoid is a function that maps time to the set of
entities X , with the restriction that at discontinuities the
distance between the entities involved is at most ε. Intu-
itively, a trajectoid corresponds to a concatenation of pieces
of the input trajectories in such a way that two consecutive
pieces match up in time, and the end point of the former
piece is within distance ε from the start point of the latter
piece. More formally, for a trajectoid T we have that
• at any time t, T (t) = σ for some σ ∈ X , and
• at every time t where T has a discontinuity, that

is, T jumps from entity σ to entity ψ, we have that
‖σ(t)ψ(t)‖ ≤ ε.

Note that this definition still allows for a series of jumps
within an arbitrarily short time interval [t, t+ δ], essentially
simulating a jump over distances larger than ε. To make
the formulation cleaner, we slightly weaken the second
condition, and allow a trajectoid to have discontinuities
with a distance larger than ε, provided that such a large
jump can be realized by a sequence of small jumps, each
of distance at most ε. When it is clear from the context, we
will write T (t) instead of T (t)(t) to mean the location of
entity T (t) at time t. We now wish to compute a trajectoid
C that minimizes the function

D(T ) =

∫ tτ

t0

D(T , t) dt.

So, at any time t, all entities lie in a disk of radius D(C , t)
centered at C(t).

Results. Because space restrictions, we present only the
situation where entities move in R1. Our approach can
be extended to Rd, as well as other measures of centrality.
For these results and all omitted proofs we refer to the full
version of this paper [9]. We show that the worst case com-
plexity of a central trajectory in R1 is Θ(τn2), and that we
can compute one in O(τn2 log n) time. For entities mov-
ing in Rd, for any constant d, the maximal complexity of a
central trajectory C is O(τn5/2). In this case, computing C
takes O(τn3) time and requires O(τn2 log n) space.

2 Preliminaries

Let X be the set of entities moving in R1. The trajectories
of these entities can be seen as polylines in R2: we associate
time with the horizontal axis, and R1 with the vertical axis
(see Fig. 2). We observe that the distance between two
points p and q in R1 is simply their absolute difference,
that is, ‖pq‖ = |p− q|.

Let I be the ideal trajectory, that is, the trajectory that
minimizesD but is not restricted to lie on the input trajecto-
ries. It follows that at any time t, I (t) is simply the average
of the highest entity U(t) and the lowest entity L(t). We

further subdivide each time interval Ji = [ti, ti+1] into
elementary intervals, such that I is a single line segment
inside each elementary interval.

Lemma 1 The total number of elementary intervals is
τ(n+ 2).

We assume without loss of generality that within each
elementary interval I coincides with the x-axis. To sim-
plify the description of the proofs and algorithms, we also
assume that the entities never move parallel to the ideal
trajectory, that is, there are no horizontal edges.

Lemma 2 C is a central trajectory in R1 if and only if it
minimizes the function

D′(T ) =

∫ tτ

t0

|T (t)|dt.

By Lemma 2 a central trajectory C is a trajectoid that
minimizes the area D′(T ) between T and the ideal trajec-
tory I . Hence, we can focus on finding a trajectoid that
minimizes D′.

3 Complexity of a Central Trajectory

Lemma 3 For a set of n trajectories in R1, each with ver-
tices at times t0, .., tτ , a central trajectory C may have worst
case complexity Ω(τn2).

Two entities σ and ψ are ε-connected at time t if there
is a sequence σ = σ0, .., σk = ψ of entities such that for
all i, σi and σi+1 are within distance ε of each other at
time t. A subset X ′ ⊆ X of entities is ε-connected at time
t if all entities in X ′ are pairwise ε-connected at time t.
The set X ′ is ε-connected during an interval I , if they are
ε-connected at any time t ∈ I . We now observe:

Observation 1 C can jump from entity σ to ψ at time t if
and only if σ and ψ are ε-connected at time t.

At any time t, we can partition X into maximal sets of
ε-connected entities. The central trajectory C must be in
one of such maximal sets X ′: it uses the trajectory of an
entity σ ∈ X ′ (at time t), if and only if σ is the entity from
X ′ closest to I . More formally, let fσ(t) = |σ(t)|, and let
L(F) = minf∈F f denote the lower envelope of a set of
functions F .

Observation 2 Let X ′ 3 σ be a maximal set of entities
that is ε-connected during interval J , and assume that C ∈
X ′ during J . For any time t ∈ J , we have that C(t) = σ(t)
if and only if fσ is on the lower envelope of the set F ′ =
{fψ | ψ ∈ X ′} at time t, that is, fσ(t) = L(F)(t).

Let X1, ..,Xm, denote a collection of maximal sets of
entities that are ε-connected during time intervals J1, .., Jm,
respectively. Let Fi = {fσ | σ ∈ Xi}, and let Li be the
lower envelope L(Fi) of Fi restricted to interval Ji. A
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(a) (b)

Figure 2: (a) A set of trajectories and the ideal trajectory I . The breakpoints in the ideal trajectory partition time into O(nτ)
intervals. (b) The trajectories after transforming I into a horizontal line.

lower envelope Li has a break point at time t if fσ(t) =
fψ(t), for σ, ψ ∈ Xi. There are two types of break points:
(i) σ(t) = ψ(t), or (ii) σ(t) = −ψ(t). At events of type
(i) the modified trajectories of σ and ψ intersect. At events
of the type (ii), σ and ψ are equally far from I , but on
different sides of I . Let B = {(t, σ, ψ) | Li(t) = fσ(t) =
fψ(t)∧i ∈ {1, ..,m}} denote the collection of break points
from all lower envelopes L1, ..,Lm.

Lemma 4 Consider a triplet (t, σ, ψ) ∈ B. There is at
most one lower envelope Li such that t is a break point in
Li.

Proof. Assume by contradiction that t is a break point in
both Li and Lj . At any time t, an entity can be in at most
one maximal set X`. So if Xi and Xj share either entity σ
or ψ, then the intervals Ji and Jj are disjoint. It follows
t cannot lie in both intervals, and thus cannot be a break
point in both Li and Lj . Contradiction. �

Lemma 5 Let A be an arrangement of n lines, describing
the movement of n entities during an elementary interval J .
If there is a break point (t, σ, ψ) ∈ B, with t ∈ J , of type
(ii), then σ(t) and ψ(t) lie on the boundary ∂Z of the zone
Z of I in A.

Lemma 6 Let A be an arrangement of n lines, describing
the movement of n entities during an elementary interval J .
The total number of break points (t, σ, φ) ∈ B, with t ∈ J ,
of type (ii) is at most 6.5n.

Lemma 7 The total complexity of all lower envelopes
L1, ..,Lm on [ti, ti+1] is O(n2).

Theorem 8 Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , a central trajectory C has worst
case complexity O(τn2).

Proof. A central trajectory C is a piecewise function. From
Observations 1 and 2 it now follows that C has a break
point at time t only if (a) two subsets of entities become
ε-connected or ε-disconnected, or (b) the lower envelope
of a set of ε-connected entities has a break point at time

t. Within a single time interval Ji = [ti, ti+1] there are at
most O(n2) times when two entities are at distance exactly
ε. Hence, the number of events of type (a) during interval
Ji is also O(n2). By Lemma 7 the total complexity of
all lower envelopes of ε-connected sets during Ji is also
O(n2). Hence, the number of break points of type (b)
within interval Ji is also O(n2). The theorem follows. �

4 Computing a Central Trajectory

We now present an algorithm to compute a trajectoid C
minimizing D′. By Lemma 2 such a trajectoid is a cen-
tral trajectory. The basic idea is to construct a weighted
(directed acyclic) graph that represents a set of trajectoids
containing an optimal trajectoid. We can then find C by
computing a minimum weight path in this graph.

The graph that we use is a weighted version of the Reeb
graph that Buchin et al. [3] use to model the trajectory
grouping structure. We review their definition here. The
Reeb graph R is a directed acyclic graph. Each edge
e = (u, v) of R corresponds to a maximal subset of enti-
ties Ce ⊆ X that is ε-connected during the time interval
[tu, tv]. The vertices represent times at which the sets of
ε-connected entities change, that is, the times at which two
entities σ and ψ are at distance ε from each other and the set
containing σ merges with or splits from the set containing
ψ. See Fig. 3 for an illustration.

By Observation 1 a central trajectory C can jump from
σ to ψ if and only if σ and ψ are ε-connected, that is, if
σ and ψ are in the same component Ce of edge e. From
Observation 2 it follows that on each edge e, C uses only
the trajectories of entities σ for which fσ occurs on the
lower envelope of the functions Fe = {fσ | σ ∈ Ce}.
Hence, we can then express the cost for C using edge e by

ωe =

∫ tv

tu

L(Fe)(t) dt.

It now follows that C follows a path in the Reeb graph
R, that is, the set of trajectoids represented byR contains
a trajectoid minimizing D′. So we can compute a central
trajectory by finding a minimum weight path inR from a
source to a sink.
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Figure 3: The Reeb graph for a set of moving entities. The
dashed lines indicate that two entities are at distance ε.

Analysis. First we compute the Reeb graph as defined by
Buchin et al. [3]. This takesO(τn2 log n) time. Second we
compute the weight ωe for each edge e. The Reeb graph
R is a DAG, so once we have the edge weights, we can
use dynamic programming to compute a minimum weight
path in O(|R|) = O(τn2) time. So all that remains is to
compute the edge weights ωe. For this, we need the lower
envelope Le of each set Fe on the interval Je. To compute
the lower envelopes, we need the ideal trajectory I , which
we can compute I in O(τn log n) time by computing the
lower and upper envelope of the trajectories in each time
interval [ti, ti+1].

Lemma 7 implies that the total complexity of all lower
envelopes is O(τn2). To compute them we have two op-
tions. We can simply compute the lower envelope from
scratch for every edge ofR. This takes O(τn2 ·n log n) =
O(τn3 log n) time. Instead, for each time interval Ji =
[ti, ti+1], we compute the arrangement A representing the
modified trajectories on the interval Ji, and use it to trace
Le in A for every edge e ofR.

Using a standard sweep line algorithm, an arrangement
of m line segments can be built in O((m+A) logm) time,
where A is the output complexity. We have O(n2) line
segments: n+ 2 per entity. Since each pair of trajectories
intersects at most once during Ji, we have A = O(n2).
Thus, we build A in O(n2 log n) time. The arrangement
represents all break points of type (i), of all functions fσ.
Next, we compute all pairs of points in A corresponding
to break points of type (ii). We do this in O(n2) time by
traversing the zone of I in A.

We now trace the lower envelopes through A: for each
edge e = (u, v) in the Reeb graph with Je ⊆ Ji, we start
at the point σ(tu), σ ∈ Ce, that is closest to I , and then
follow the edges in A corresponding to Le, taking care to
jump when we encounter break points of type (ii). Our
lower envelopes are all disjoint (except at endpoints), so
we traverse each edge in A at most once. The same holds
for the jumps. We can avoid costs for searching for the
starting point of each lower envelope by tracing the lower
envelopes in the right order: when we are done tracing Le,

with e = (u, v), we continue with the lower envelope of
an outgoing edge of vertex v. If v is a split vertex where
σ and ψ are at distance ε, then the starting point of the
lower envelope of the other edge is either σ(tv) or ψ(tv),
depending on which of the two is farthest from I . It follows
that when we have A and the list of break points of type
(ii), we can compute all lower envelopes in O(n2) time.
We conclude:

Theorem 9 Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , we can compute a central trajec-
tory C in O(τn2 log n) time using O(τn2) space.

5 Entities Moving in Rd

For entities moving in R1 we used that computing a cen-
tral trajectory was equivalent to finding a trajectoid that
minimizes the distance to the ideal trajectory. In Rd, with
d > 1, however, this is no longer true. Instead, we directly
use the functions Dσ expressing the distance between an
entity σ and the entity furthest away from σ. We can then
still use Observations 1 and 2 to bound the complexity of C
byO(τn5/2). An algorithm similar to that of Section 4 that
runs in O(τn3) time can then be used to compute a central
trajectory. The details can be found in the full version [9].
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Silveira, C. Wenk, and L. Wiratma. Median trajectories.
Algorithmica, 66(3):595–614, 2013.

[3] K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, and
F. Staals. Trajectory grouping structure. In Proc. 2013 WADS
Algorithms and Data Structures Symposium, volume 8037 of
LNCS, pages 219–230. Springer, 2013.

[4] C. Calenge, S. Dray, and M. Royer-Carenzi. The concept of
animals’ trajectories from a data analysis perspective. Eco-
logical Informatics, 4(1):34 – 41, 2009.

[5] S. Dodge, R. Weibel, and E. Forootan. Revealing the physics
of movement: Comparing the similarity of movement char-
acteristics of different types of moving objects. Computers,
Environment and Urban Systems, 33(6):419–434, 2009.

[6] E. Gurarie, R. D. Andrews, and K. L. Laidre. A novel method
for identifying behavioural changes in animal movement data.
Ecology Letters, 12(5):395–408, 2009.

[7] X. Li, X. Li, D. Tang, and X. Xu. Deriving features of traffic
flow around an intersection from trajectories of vehicles. In
Proc. 18th Int. Conf. on Geoinf., pages 1–5. IEEE, 2010.

[8] A. Stohl. Computation, accuracy and applications of trajecto-
ries – a review and bibliography. Atmospheric Environment,
32(6):947 – 966, 1998.
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Abstract

Given a set of points in the plane, we consider prob-
lems of finding polygonalizations that use all these
points as vertices and that are minimal or maximal
with respect to covered area or length of the bound-
ary. By distinguishing between polygons with and
without holes, this results in eight different problems,
one of which is the famous Traveling Salesman Prob-
lem. Starting from an initial flexible integer program-
ming (IP) formulation, we develop two specific IPs
and report preliminary results obtained by our imple-
mentation.

1 Introduction

Two of the fundamental structures of Computational
Geometry are planar point sets and polygons. Often
they come closely related, for example when asking
for a polygonalization: for a given set V of n points in
the plane, find a polygonalization with vertex set V ,
possibly subject to some objectives and constraints.
In the 1990s, the generation of random polygons on
a given point set was considered with the motivation
of getting polygons as input for geometric algorithms.
Auer et al. [1] named five different heuristics for the
generation of random polygons. O’Rourke et al. [8]
focused on random polygons, while Mitchell et al. [12]
worked on random monotone polygons.

Given the geometric character of polygons, natu-
ral objectives are boundary length and area, which
may be minimized or maximized. Furthermore, we
may consider simple polygons (without holes and self-
intersections) or, more generally, polygons with holes.
Just like that, we have a family of eight basic problems
of polygonalizing a set V ; see Table 1 and Figure 2.

general simple
area boundary area boundary

min MinArea MinBound SMinArea SMinBound

max MaxArea MaxBound SMaxArea SMaxBound

Table 1: Problem overview
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berg.melanie@gmail.com, arne.schmidt@tu-bs.de, j.troegel@tu-
bs.de
†Max Planck Institute for Informatics, Saarbrücken, Ger-
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r

P

r

P

Figure 1: Calculation of the area of P : Using some
reference point r, each edge forms an oriented tri-
angle. Counterclockwise triangles contribute positive
area (left), others are subtracted (right).

1.1 Related Work on Complexity

Without doubt, the most prominent family member
is SMinBound, the Euclidean Traveling Salesman
Problem (TSP): Thanks to the triangle inequality, a
shortest tour for a given set of vertices is always non-
crossing. This classical version of the problem is NP-
hard, with well-established benchmark sets [9]. The
complexity of MinBound is unknown; note that an
optimal 2-factor does not necessarily yield an optimal
solution, so the problem may still turn out to be NP-
hard. Problems of maximum-boundary length have
also been studied, and are related (but not identical)
to the Maximum Traveling Salesman Problem [5, 2],
whose complexity on a planar point set is Problem
#49 of the famous Open Problems Project list [3]. To
the best of our knowledge, the complexity of Max-
Bound as well as SMaxBound is open. Dumitrescu
and Tóth [4] gave a 2/π-approximation algorithm for
a broad class of instances of SMaxBound. Note that
all of these problems have to deal with the additional
difficulty of computing a sum of square roots, which
is a classical open problem: #33 in [3].

As opposed to the difficulty concerning Euclidean
distances, the area of a polygon with rational ver-
tices is rational and can be computed efficiently; see
Figure 1. Optimizing area is also a natural prob-
lem. While it has received less attention than TSP
and its variants, its complexity has been resolved.
Fekete [7, 6] showed that SMinArea and SMax-
Area are both NP-hard problems; using the same
construction, we can conclude that MinArea is also
NP-hard. With a separate construction (not given
here due to space limitations), we can show that Max-
Area is NP-hard as well.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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MaxArea SMaxArea MinArea SMinArea

MaxBound SMaxBound MinBound SMinBound

Figure 2: Different optimal solutions on the same input set V for all eight problems.

1.2 Computing Optimal Polygons

As discussed, all problem variants are either known
or conjectured to be NP-hard. In the theory commu-
nity, this is typically used as an incentive for study-
ing approximation algorithms. While several of our
problem variants have been studied in this regard
(e. g., Euclidean and Max TSP allow polynomial-time
approximation schemes, while others allow constant-
factor approximations), this is not the goal of this pa-
per. Instead, we want to demonstrate that it is still
possible to compute provably optimal solutions for
instances of these NP-hard problems, by combining
methods of combinatorial optimization (most notably,
integer linear programming) with geometric insights.
As it turns out, this yields some relatively generic ap-
proaches that are suitable for all our problems, and
thus possibly for related ones as well. As the ability to
check the true optimal values for some instances can
provide better comparisons, our approach may also be
beneficial for the study of approximation algorithms
and heuristics.

2 IP Formulation

Our approach is an IP-based algorithm that solves a
relaxation and then, on-demand, adds constraints in
a separation phase. (For an introduction to linear and
integer programming, see [10].)

2.1 Edge-Based IP for Polygonal Subdivisions

Let E = L ∪ R be the set of all oriented edges of
the complete graph induced by V , where L and R are
the edges directed to the left and right, respectively.
By eij we denote the edge from vi to vj and by zij ∈
{0, 1} its corresponding variable, by XR(eij) the set of

edges in R crossing eij . Depending on the considered
problem, fij either denotes the Euclidean length of eij
or the signed area of the triangle that is formed by eij
and the origin, which is used as reference point; see
Figure 1. Hence, the objective function is given by

min/max
∑

i 6=j
fijzij + fjizji (1)

This is subject to the following constraints:

∀i :
∑

j 6=i

zij = 1
zji = 1

(2)

∀i 6= j : zij + zji ≤ 1 (3)

∀i < j and kij = |XR(eij)| :
kijzij + kijzji +

∑

ekl∈XR(eij)

(zkl + zlk) ≤ kij (4)

zij ∈ {0, 1} (5)

Because (2) fixes in- and out-degree of each ver-
tex to one, (3) ensures that for each edge at most
one direction is selected, while (4) prevents crossing
edges, solving this IP results in an arrangement of
non-intersecting oriented (and non-trivial) edge cy-
cles. (1) – (5) generates disjoint, non-trivial, oriented
cycles by merely inducing O(n2) constraints and vari-
ables.

However, a polygon is represented by one outer edge
cycle, which is oriented counterclockwise and, in the
case of general polygons, possibly some inner clock-
wise cycles that represent the holes. Hence, clockwise
cycles incident to the outer face is invalid, as are clock-
wise cycles that enclose vertices, because they repre-
sent holes in holes. Both types are eliminated by the
following additional family of constraints.

∀ invalid directed cycles C :
∑

∀e∈C
ze ≤ |C| − 1. (6)
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slab

ray

0

1

0

1

0

Figure 3: Five points inducing four inner slabs. Wind-
ing numbers are indicated along one ray.

However, because there is an exponential number of
constraints of type (6), these are added on demand in
a separation phase. IP (1) – (6) is named BasicIP.

2.2 A More Efficient Polygonalization

The main issue with BasicIP is that it requires an
enormous number of separation steps as it produces
many arrangements of boundary cycles that do not
represent polygons, let alone a connected or even sim-
ple polygon. For example, in the case of MinArea,
the IP first prefers boundary cycles with negative
area, which then need to be excluded in additional
separation steps. It is therefore desirable to enforce a
set of boundary cycles that represents a valid polyg-
onal arrangement right away.

Consider a valid polygonal arrangement and a verti-
cal ray from bottom to top. This ray may cross several
boundary edges. Let e be a crossed edge. If e ∈ R,
the winding number is incremented by one, while it is
decremented otherwise; see Figure 3.

Let S be the subdivision of R2 into n + 1 vertical
slabs induced by V . Shooting a vertical ray along
each slab ensures that every face of any arrangement
of edge cycles that are induced by V is visited. For
slab s ∈ S, we denote by [eRs

1 , . . . , eRs

Ks
] the sequence of

edges oriented to the right and crossing s in the order
from bottom to top1, analogously for edges in L. The
following pairs of constraints ensure that the winding
number alters between 0 and 1 for every slab.

∀s ∈ S and ∀k = 1, . . . ,Ks :

k∑

i=1

zeRs
i
− zeLs

i

≥ 0
≤ 1

(7)

As k increases to Ks, the sum simulates a walk along
the ray from bottom to top, thereby adding or sub-
tracting one to the winding number if a corresponding
edge is selected.

This yields an extra O(n3) constraints as Ks ∈
O(n2) and we call the IP (1) – (7) SlabsIP.

1It suffices to consider the order of edges with respect to a
vertical ray within the slab, because intersecting edges change
their order, so they cannot be selected at the same time.

β1

β3

β2

αik - αji

eik

eji

αik
αji

βi = αik - αji + 360°

Figure 4: Left: Calculation of Boundary Number.
Right: Calculation of enclosing angles.

2.3 Boundary Index

SlabsIP produces valid polygonal arrangements.
However, especially when solving SMinArea, many
solutions consisting of small distinct polygons have to
be eliminated in separation steps. Therefore, it is de-
sirable to add constraints that encode the sum B of
positive and negative boundary cycles. In the case
of simple polygons, we have B = 1, while for general
polygons B ≤ 1 holds.

First observe that for each boundary cycle, we can
sum up the angles βi that are enclosed by two edges
at vertex i (see Figure 4). For each counterclockwise
cycle, these angles add up to +360◦, and to −360◦ for
clockwise ones. Hence, summing up at every vertex
and dividing by 360◦ yields B.

Let αij denote the angle between eij and the x-
axis, in counterclockwise orientation. Now the angle
between eij and ejk at vj is αjk −αij . This is correct
modulo 360◦, and we obtain

∀i :
∑

j 6=i
αijzij −

∑

j 6=i
αjizji + 360yi

≤ +180
≥ −180

(8)

yi ∈ {−1, 0,+1}. (9)

In order to obtain B, we sum up over all angles in (8):

B =
1

360

n∑

i=1


∑

j 6=i
αijzij −

∑

j 6=i
αjizji + 360yi




However, because we already ensure closed cycles,
the αij cancel out and for general polygonswe only
add the following constraint2:

n∑

i=1

yi ≤ 1 (10)

This adds only O(n) constraints and variables.
However, note that this does not completely avoid
separations steps. For instance, an arrangement of
two polygons, one of which has one hole, has bound-
ary index one. Such a solution must still be cut off in
a separation step. IP (1) – (10) is named BIndexIP.

2For simple polygons, we use
∑n

i=1 yi = 1
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Figure 5: Success rate for the eight problems, with
30 instances for each input size (y-axis). Left bars:
SlabsIP. Right bars: BIndexIP.
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Figure 6: Average number of separation steps for 30
instances of the given input size. All instances where
solved within the time limit. Blue: SlabsIP. Red:
BIndexIP.

3 Experiments

Our implementation uses CPLEX to represent and
solve the presented IPs. The geometric part is based
on the CGAL Arrangements package [11]. CGAL
represents planar subdivision by a doubly connected
edge list (DCEL), which is ideal for detecting invalid
boundary cycles.

All experiments were run on an Intel Core i7-4770
CPU clocked at 3.40 GHz with 16 GB of RAM. For
each point size we considered 30 randomly generated
instances, with a time limit of 30 minutes. We do not
show benchmark results for BasicIP, as it performed
much worse than SlabsIP and BIndexIP.

We observe that both generic IPs perform much
better for the minimum boundary problems (Min-
Bound and SMinBound, i.e., the TSP), for which
we are able to solve all instances up to about 45 in-
put points; see Figure 5. This is still much worse
than the performance of custom-made approaches for
the TSP, but it illustrates the greater practical diffi-
culty of the other problems. For all problems that op-
timized boundary BIndexIP, performed worse than
SlabsIP, as BIndexIP was not able to significantly
reduce the number of separation steps. In the case
of MaxBound and SMaxBound, already SlabsIP
requires hardly any separation steps; see Figure 6.

In the case of problems optimizing the area, we
can observe that BIndexIP indeed improves the per-

formance significantly. The only exception is Max-
Area, for which already SlabsIP usually does not
require any separation step. The reason is that the op-
timal result is essentially the convex hull of the point
set with some small inner triangles removed, which is
usually found in the first round. However, for SMax-
Area as well as MinArea and SMinArea we can
observe a significant advantage for BIndexIP, as it
is essentially able to skip the separation step.

Why are minimum boundary problems practically
easier to solve? For these problem variants, the inter-
section constraints (4) are already implied by triangle
inequality, and as such only give a slight overhead;
this is not the case for the other problem variants.
This can be further exploited; for problems optimiz-
ing the boundary, a more specialized IP formulation
can be based on undirected edges, requiring only half
the number of variables as in our generic approach.
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Pruning Oracles for High-Dimensional Vector Sets

Stefan Funke i Sabine Storandt ii

Abstract

We consider the following problem: Given a set S
of non-negative d-dimensional cost vectors, we want
to compute S′ ⊆ S with S′ containing only vectors
v from S for which exists an α ∈ Rd≥0 such that

αT v ≤ αTw for all w ∈ S. Based on a geometric
interpretation of this problem we propose pruning or-
acles which reduce S to S′. We outline how these
oracles can be employed in practice in the context of
personalized route planning in huge street networks.
Finally, we prove the effectiveness of the oracles ex-
perimentally using a CGAL-based implementation.

1 Introduction

Given a set S of non-negative d-dimensional vec-
tors, we want to solve the minimization problem
minv∈S αT v with α ∈ Rd≥0. In particular, we want
to answer the following type of query: for given α,
find the vector v ∈ S which yields the minimum value
α1v1 + α2v2 + · · · + αdvd. Obviously, if S contains
vectors that are never optimal no matter how α is
chosen, these vectors can be pruned from S. We call
the reduced set S′. The more concise S′, the faster
the optimal vector can be identified for given α, and
the less space is needed to store S′. Hence our goal
is to construct pruning oracles, which reduce S to the
smallest possible subset S′, such that for any choice
of α the solution is still the same as for S.

If we interpret the d-dimensional vectors in S as
points in a d-dimensional coordinate system, the vec-
tors that have to be kept in S′ are exactly the ones
that correspond to corners of the convex hull of S that
are visible from the origin of the coordinate system
(for an opaque convex hull). In the dual view, where
the vectors become hyperplanes, these are the ones
on the lower envelope of all hyperplanes. In Figure 1
both views are illustrated for d = 2.

In principle, the interpretation of vectors as points
in Rd provides us with a straightforward solution for
our problem. In fact, we only have to construct the
convex hull and inspect the part of it that is visible
from the origin. But in practice this approach is not
really applicable. The complexity of the boundary de-

iDepartment of Computer Science, Universität Stuttgart,
Germany, funke@fmi.uni-stuttgart.de

iiDepartment of Computer Science, Universität Freiburg,
Germany, storandt@informatik.uni-freiburg.de
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Figure 1: Two representations of the vector set
(1, 7), (2, 4), (2, 9), (3, 6), (5, 3), (6, 2); in the left image as
lines, in the right image as points. The items that bor-
der the visible area of interest (gray) are coloured blue.
Those form the boundary of the convex hull visible from
the origin. In this example it is (1, 7), (2, 4), (6, 2).

scription of the convex hull of |S| points in d dimen-
sions might be in the order of |S|bd/2c. Already for
moderate dimensions, the computation of the convex
hull becomes very expensive for large sets S and also
error-prone if floating point arithmetic is used. Exper-
imenting with an implementation of a d-dimensional
convex hull algorithm in CGAL, we could not get ac-
ceptable running times for d larger than 3.

The scope of this paper is the design of efficient
methods to construct S′ (or small supersets thereof)
without explicitly constructing the convex hull of S.

1.1 Related Work

There exist various methods to construct the convex
hull in d dimensions, e.g. a deterministic algorithm
with a runtime of O(|S| log |S| + |S|bd/2c) [2], or the
QuickHull algorithm [1]. But these methods are de-
signed for computing and investigating the complete
facet structure of the convex hull. In our scenario,
we are neither interested in the part of the convex
hull not visible from the origin nor in the actual facet
structure, but only in the visible extreme points.

1.2 Contribution

We present several pruning strategies which reduce
the set S of d-dimensional cost vectors efficiently. We
show that these pruning oracles can be employed in
the context of personalized route planning in huge
street networks. Our experimental results prove that
our oracles work in practice and can be implemented

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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(using CGAL) even for high dimensions d.

2 Pruning High-Dimensional Cost Vectors

Let us first focus on pruning strategies/oracles which
might not lead to the minimal possible reduced set
S′, but are simple and very efficient. Then we in-
troduce a more sophisticated incremental approach,
which constructs the optimal S′.

2.1 Pruning Dominated Vectors

The most straightforward strategy to prune vectors
from S is by domination. A vector v ∈ Rd dominates
another vector w ∈ Rd if vi ≤ wi ∀i = 1, . . . , d and
vi < wi for at least one i ∈ {1, . . . , d}.

One can compare each vector v to every other vec-
tor v′ in the set, checking component-wise if vi ≤ v′i
for i = 1, · · · , d in order to prune out all dominated
vectors. This leads naively to a runtime of O(d|S|2).

2.2 Pruning Spanned Vectors

Of course, not every non-dominated vector is optimal
for some choice of α. The following Lemma character-
izes superfluous, non-dominated cost vectors that can
never be optimal no matter what α has been chosen.

Lemma 1 A vector v ∈ Rd can be pruned from a set
of vectors S if a convex combination v′ of at most d
other vectors from S dominates v.

Proof. Assume for contradiction that for given α,
vector v uniquely defines the minimum cost αT v = z,
that is, v cannot be pruned. Let w1, w2, · · · , wd be
the d vectors that span v′ which dominates v. So we
can represent v′ as γ1w1 + γ2w2 + · · · + γdwd with∑d
i=1 γi = 1, γi ≥ 0. By the domination property we

know that αT (γ1w1 + γ2w2 + · · ·+ γdwd) ≤ z as well.
This formula can be rearranged as follows:

γ1α
Tw1 + γ2α

Tw2 + · · ·+ γdα
Twd ≤ z

As αT v = z is the minimum among all possible vec-
tors, we conclude that αTwi > z for i = 1, · · · , d.
Plugging this observation in the formula above, we
get:

d∑

i=1

γiα
Twi >

d∑

i=1

γiz = z
d∑

i=1

γi = z

This obviously contradicts the fact that the left hand
side is less or equal to z. Hence the initial assumption
that v is necessary to get the minimum cost for some
α is wrong, and v can be pruned. �

The other direction is also easy to see. If a vector
can v ∈ Rd can be pruned from S, i.e., for any α there
is a better vector in S, the respective vectors convexly
combine to a vector dominating v.

2.2.1 A Simple Pruning Oracle

Lemma 1 tells us that a vector v can be pruned if it
is dominated by a vector v′ spanned by d other vec-
tors. Given a set of d vectors w1, w2, · · · , wd, the test
whether a vector v is pruned by them boils down to
checking whether the following system of linear in-
equalities has at least one feasible solution:

γ1w11 + γ2w21 + · · ·+ γdwd1 ≤ v1
γ1w12 + γ2w22 + · · ·+ γdwd2 ≤ v2

· · ·
γ1w1d + γ2w2d + · · ·+ γdwdd ≤ vd

γ1 + γ2 + · · ·+ γd = 1

γi ≥ 0

A straightforward pruning oracle then checks for each
vector if it is pruned by one of the b =

(|S|
d

)
possible

choices of d vectors from S. This issues O(b · |S|) calls
to a linear programming solver, rendering this ap-
proach somewhat impractical. We can’t do wrong by
only pruning with some few promising bases, though.

A natural choice for a promising set of d vectors is
to pick for each dimension the vector with minimum
value in the respective component. If by that a vector
is chosen for several dimensions, vectors with second,
third, . . . smallest value in the respective components
are chosen from S. In practice, the resulting set of
vectors quickly prunes a large fraction of superfluous
vectors out of S.

2.2.2 A Complete Pruning Oracle

As mentioned before, the vectors/points that have to
be kept in S′ are exactly the ones visible from the
origin on the boundary of the convex hull of all vec-
tors/points. As we are only interested in those points,
we have no use for the complete facet structure of the
convex hull boundary. So the question is, how to de-
termine the desired points efficiently without wasting
too much time for constructing parts of the convex
hull that we never inspect anyway.

To guarantee that the complexity of the final convex
hull description is only influenced by the part visible
from the origin, we simply augment S with d auxil-
iary points p1, · · · , pd ∈ Rd where every component
of pi equals 0 except for pii = ∞. Obviously, all
non-auxiliary extreme points of the convex hull of the
augmented point set are visible extreme points of the
convex hull of the original point set.

When applying one of the standard convex hull al-
gorithms, the intermediate description of the convex
hull during the construction might be significantly
more complex than the final structure. To avoid such
an overhead as far as possible, and at the same time
accelerate the computation of the visible points, we
devise an incremental approach. Starting with the
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Figure 2: Illustration of our incremental pruning oracle
for d = 2. Gray points are untouched so far. Points
already considered are black if they lie on the boundary
of the convex hull and are visible from the origin, or red
if already pruned.

auxiliary vectors we add the points from S one by one,
points more promising to be extreme first. Whenever
a point is added, we have to decide whether it is ex-
treme with respect to the points considered so far.
With the current extreme points, we can instrument
a linear program similar to the one introduced in the
last subsection to check for extremeness. If the new
point/vector is spanned, it can be discarded. Other-
wise the previously inserted points have to be checked
for extremeness again. This approach issues O(|S|2)
calls to the extremeness oracle. It is reasonably ef-
ficient in practice as long as the number of visible
points is not too big. Clearly, any vector v that is
spanned by some other vectors is pruned as soon as
all these vectors and v have been considered and vice
versa, only superfluous vectors can be pruned.

Figure 2 illustrates this incremental pruning oracle
on the example instance used in Figure 1.

3 Application: Personalized Route Planning

When planning the best route from A to B in a street
network, the notion of optimality differs from person
to person. Some only care about reaching their desti-
nation as quickly as possible, others want to minimize
fuel consumption, avoid tolls, or prefer scenic routes.
Often a fair trade-off between several such preferences
is the desired route. We call this problem personalized
route planning (PRP) and formalize it as follows:

For a street network G(V,E), we have for each edge
e ∈ E a d-dimensional cost vector c(e) ∈ Rd≥0 (e.g. c1
corresponding to travel time, c2 to gas price, etc.). A
query consists not only of source and target s, t ∈ V
but also of non-negative weights α1, α2, · · · , αd, where
αi expresses the importance of edge cost component i
for the user. The goal is to compute the path p from
s to t in G which minimizes

∑
e∈p α

T c(e).

Dijkstra can compute personalized routes for given
α, by evaluating αT c(e) on demand when relaxing an
edge. A Dijkstra run takes in the order of several
seconds on continental sized road networks, though.
In [3], an acceleration scheme based on k-Path Covers
was proposed which achieves a speed-up of about 13.

A k-Path Cover (k-PC) on a graph G(V,E) is a
subset of the nodes W ⊆ V , such that for every simple
path in G consisting of k nodes at least one of those

Figure 3: Example of a k-Path Cover for k = 4 (red
nodes), and the induced overlay graph (blue edges).
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(8,1)

(9,6)

Figure 4: Example for two metrics (d = 2). Cover nodes
are colored red, the overlay graph consisting of a single
edge is blue. As there are three different simple paths
from one cover node to the other, the overlay edge between
them gets assigned three labels. The overlay labels stem
from summing up the original labels along the respective
paths.

nodes is contained in W , see Figure 3 for an example.

k-Path Covers can be instrumented for personalized
route planning as follows. First, an overlay graph is
computed which contains an edge between any two
neighbors in the cover. Here, two cover nodes are
neighbors if there exists a simple path between them
in G not containing any other cover node (see again
Figure 3 for an illustration). Then every edge (u, v)
in the overlay graph is augmented with cost vectors.
In particular, for every simple path p from u to v
free of other cover nodes, the accumulated cost vector∑
e∈p c(e) is associated with (u, v). A small example

of this process in provided in Figure 4. This completes
the preprocessing phase. Note that the number of
vectors associated with an edge (and hence the space
consumption) grows quickly with k as the number of
paths between two nodes can grow exponentially with
the number of nodes in the network.

In a query, first local Dijkstra computations are run
from s and t (reversely) until all paths in the Dijkstra
search tree contain at least one settled cover node.
The remaining search between nodes settled in the
runs from s and t is conducted in the overlay graph
only. During the search edge costs are evaluated using
α provided with the query. The query times are domi-
nated by the search in the overlay graph, in particular
by the number of edges and cost vectors assigned to
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unpruned dominance simple complete simple + complete

k |C| ∑ |S| ∑ |S| time(s)
∑ |S| time(s)

∑ |S| time(s)
∑ |S| time(s)

12 256k 1,385k 1,084k <1 1,084k <1 1,083k 1,557 1,083k 616
20 161k 1,755k 941k <1 941k <1 935k 2,535 935k 911

B
W

24 137k 2,171k 916k 1 916k 1 908k 2,904 908k 1,040
32 107k 4,484k 909k 18 911k 17 894k 4,745 894k 1,199
40 90k 20,883k 923k 6,215 925k 26 - - 899k 1,465
48 78k 98,690k - - 959k 111 - - 919k 1,666

20 1,064k 12,000k 6,176k 4 6,176k 3 - - 6,142k 5,942
24 876k 18,494k 5,970k 38 5,970k 13 - - - -

G
E

R

32 710k 40,709k 5,911k 1,051 5,917k 65 - - - -

Table 1: Pruning of vector sets in the k-PC based overlay graph, |C| denotes the size of the k-Path Cover,
∑ |S|

denotes the total number of cost vectors generated in the overlay graph. Timings are given in seconds.

these edges. So while in principle large values of k
are desirable to reduce the number of nodes in the
overlay graph and the query times, the extreme blow-
up in the number of cost vectors limited the usability
of this approach to values of k around 20. Now the
obvious idea is to prune the set of cost vectors using
the oracles described in the last section. Decreasing
the number of cost vectors significantly should lead
to more efficient personalized route planning queries
allowing both more metrics and/or larger values of k.

4 Experimental Results and Future Work

Our implementation of the k-Path Cover based per-
sonalized route planning approach is written in C++.
For the pruning oracles we used the Computational
Geometry Algorithms Library (CGAL) [4], in partic-
ular their exact linear programming solver. Timings
were measured on a single core of an Intel(R) i7-3930K
CPU with 3.20GHz and 64GB RAM.

We present results on two large graphs: Baden-
Württemberg (BW) with 2.23 million edges and and
4.64 million edges, and Germany (GER) with 17.73
million nodes and 36.06 million edges (extracted from
OSM1). We applied the k-Path Cover approach [3] to
both graphs for varying values of k and constructed
the overlay graph and the respective initial vector sets
S for each edge using d = 8 natural metrics. Then
we applied our proposed pruning strategies and mea-
sured the resulting set sizes. In Table 1, the values are
summarized. We observe that simple pruning can be
applied to all our instances, while the complete prun-
ing oracle becomes impractical for BW and k = 40. If
we apply simple pruning first, and then the complete
pruning oracle on top, we can solve all BW instances
and even GER for k = 20. In general, our pruning or-
acles reduce the set sizes for all instances significantly.
The effect becomes more pronounced with increasing
value of k, as the number of simple paths between two
nodes grows quickly with k, so the potential number
of non-optimal cost vectors in S is higher. For BW

1https://www.openstreetmap.org/

and k = 48 less than 1% of the initial cost vectors re-
main in the final sets. In terms of space, the overlay
graph reduces from 24.6GB to 161MB after pruning.

Runtimes reported for dominance pruning corre-
spond to the naive quadratic implementation. So
there is possibly a lot of room for acceleration here,
especially as we could use dominance pruning also in
an incremental fashion. We conducted experiments
for even larger k than presented in Table 1 on the
bases of a subsample of overlay graph edges and not
the whole graph, though. These experiments indicate
that the efficacy (in terms of result size) of dominance
pruning compared to complete pruning deteriorates
rapidly. Complete pruning outperformed dominance
pruning by a factor of 2 to 28.

Hence in future work, dominance pruning should be
made more efficient, but mainly to allow for an initial
reduction of the set that is then fed into another (com-
plete) pruning oracle. Here, either our proposed in-
cremental complete oracle should be accelerated (e.g.
by coming up with a clever order of the points to
add), or new (complete) oracles should be designed
that allow to tackle even larger vector sets efficiently.
Also, we currently employ an exact LP solver as not
to compromise optimality of the resulting paths. It
might be worth to investigate a conservative use of
fast floating-point LP solvers as long as they do not
destroy optimality of the PRP queries.
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Non-crossing Monotonic Paths in Labeled Point Sets on the Plane

Toshinori Sakai∗† Jorge Urrutia‡§

Abstract

Let n be a positive integer, and let P be a set of
n points in general position on the plane with la-
bels 1, 2, . . . , n. The label of each p ∈ P will be de-
noted by ℓ(p). A polygonal line connecting k elements
p1, p2, . . . , pk of P in this order is called a monotonic
path of length k if the sequence ℓ(p1), ℓ(p2), . . . , ℓ(pk)
is monotonically increasing or decreasing in this or-
der. We show that P contains a vertex set of a non-
crossing monotonic path of length at least c(

√
n − 1),

where c = 1.0045 . . . .

1 Introduction

Let P be a set of points on the plane. P is in gen-
eral position if no three of its elements are collinear.
Furthermore, P is in convex position if all points
are vertices of the convex hull of P . All point sets
P considered in this paper are in general position,
and consisting of points with pairwise different labels
1, 2, . . . , |P |. We will refer to these point sets as lp-
sets. For each lp-set P , the label of a point p ∈ P will
be denoted by ℓ(p).

Let P be an lp-set. A polygonal line connecting k
elements p1, . . . , pk of P in this order is called a mono-
tonic path of length k if the sequence ℓ(p1), . . . , ℓ(pk)
is monotonically increasing or decreasing (Figure 1).
When P contains the vertex set of a non-crossing
monotonic path of length k, we will say that P con-
tains a non-crossing monotonic path of length k.

The length of a finite sequence is the number of its
terms. The following theorem is (a corollary of) a well
known result by Erdős and Szekeres [3]:

Theorem 1 Let n be a positive integer. Then any se-
quence of n distinct real numbers contains a monoton-
ically increasing or decreasing subsequence of length
at least

√
n. This bound is tight.

In [4], Sakai and Urrutia proved that any n-element
lp-set in convex position contains a non-crossing
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†Research supported by JSPS KAKENHI Grant Number
24540144.
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Figure 1: An lp-set (each number represents the label
of each element) and a monotonic path of length 6.

monotonic path of length at least
√

3n − 3
4 − 1

2 , im-

proving on a result by Czyzowicz, Kranakis, Krizanc
and Urrutia [2]. In [4], it is also conjectured that any
n-element lp-set in convex position contains a non-
crossing monotonic path of length at least 2

√
n − 1.

Furthermore, it has been believed that there exists
a constant c > 1 such that the following statement
holds: any n-element lp-set in general position con-
tains a non-crossing monotonic path of length at least
c
√

n − o(
√

n). In Section 2, we show the following re-
sult:

Theorem 2 Let n be a positive integer. Then any
n-element lp-set P in general position contains a non-
crossing monotonic path of length at least c(

√
n − 1),

where c = 1
2

(√√
10
3 − 1 + 1

q√
10
3 −1

)
= 1.0045 . . . .

Note that it is easy to verify that any n-element lp-
set contains a non-crossing monotonic path of length
at least

√
n. Actually, we have only to take a straight

line l that is not perpendicular to any straight line
connecting two distinct elements of P , to project all
elements of P orthogonally to l, and to apply The-
orem 1 to the sequence obtained on l. Though the
constant c = 1.0045 . . . in Theorem 2 is just slightly
greater than 1, the result shows that the behavior of
problems on monotonic sequences and non-crossing
monotonic paths are essentially different.

2 Proof of Theorem 2

In this section, we prove Theorem 2 (for n ≥ 4).

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
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A finite sequence {xi}n
i=1 is said to be unimodal

(resp. anti-unimodal) if there is an m, 1 ≤ m ≤ n,
such that x1 < x2 < · · · < xm and xm > xm+1 >
· · · > xn (resp. x1 > x2 > · · · > xm and xm <
xm+1 < · · · < xn). To prove Theorem 2, we use
the following Theorem 3 which was first obtained by
Chung [1], and later by Sakai and Urrutia [4].

Theorem 3 Let n be a positive integer. Then any
sequence of n distinct real numbers contains a uni-
modal or anti-unimodal subsequence of length at least√

3n − 3
4 − 1

2 .

In Figure 2, for k = 3, we present an example with
n = 3k2 +k = 30 terms whose longest unimodal/anti-

unimodal subsequence has length
⌈√

3n − 3
4 − 1

2

⌉
=

3k = 9.

Figure 2: The maximum length of a unimodal/anti-
unimodal subsequence is 3k.

Now we proceed to the proof of Theorem 2. We
may assume that P is an lp-set on R2, and that no
two points of P have the same x-coordinate. Let
p1, p2, . . . , pn be the elements of P in increasing or-
der of their x-coordinates, and let L be the sequence
ℓ(p1), ℓ(p2), . . . , ℓ(pn) (recall that ℓ(x) denotes the la-
bel of point x), which is a permutation of {1, 2, . . . , n}.
For each i with 1 ≤ i ≤ n, let ai denote the length
of the longest increasing subsequences of L ending at
ℓ(pi), bi the length of the longest decreasing subse-
quences of L ending at ℓ(pi), and Ai the point (ai, bi)
on the ab-coordinate plane. Set A = {Ai : 1 ≤ i ≤ n}.
We can verify that the following lemma holds:

Lemma 4 Let i and j be integers with 1 ≤ i < j ≤ n.
Then the following (i) and (ii) hold.
(i) If ℓ(pi) < ℓ(pj), then aj ≥ ai + 1.
(ii) If ℓ(pi) > ℓ(pj), then bj ≥ bi + 1.

So, for distinct indices i and j, we must have Ai 6= Aj .

First consider the case where there exists m such
that am ≥ c(

√
n − 1) (recall that c = 1.0045 . . . , as

in the statement of Theorem 2). In this case, there
exists a non-crossing path connecting am points of P
and ending at pm such that the values of the labels of
its vertices monotonically increase along it, as desired.
Also, in the case where there exists m such that bm ≥
c(

√
n − 1), we can find a path with desired properties

as well. Thus we may assume that

ai < c(
√

n − 1) and bi < c(
√

n − 1)

for all 1 ≤ i ≤ n.

}
(1)

A Non-crossing Monotonic Path P

Let d =

√√
10
3 − 1 = 0.9087 . . . . We have c =

1
2

(
d + 1

d

)
, and hence

2cd = d2 + 1. (2)

We can also verify the following (3) and (4).

0.09 < c − d < 0.1. (3)

14c2 − 5d2 = 10. (4)

Lemma 5 There exists m such that

am > d(
√

n − 1) and bm > d(
√

n − 1) (5)

(Figure 3).

)1( −nd
a

b

O
)1( −nc

)1( −nc

)1( −nd

),( mm ba

Figure 3

Proof. By way of contradiction, suppose that ai ≤
d(

√
n − 1) or bi ≤ d(

√
n − 1) for all i. From this

assumption and (1), it follows that

|A| < [c(
√

n − 1)]2 − [(c − d)(
√

n − 1) − 1]2

< n − 2
√

n + 2(c − d)(
√

n − 1) (by (2))

< n (by (3)),

a contradiction. �

Take m satisfying (5). By symmetry, we may as-
sume that

ℓ(pm) ≤ n

2
. (6)

Also, by the definition of the ai, there is a non-crossing
path P connecting am points of P and ending at pm

such that the values of the labels of points monoton-
ically increase along P . We have

the length of P = am > d(
√

n − 1) (7)

by (5).
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A Path Connecting a Unimodal Sequence

Next we define Q1 and Q2 by

Q1 = {pi : 1 ≤ i ≤ m − 1 and ℓ(pi) > ℓ(pm)}, and

Q2 = {pi : m + 1 ≤ i ≤ n and ℓ(pi) > ℓ(pm)}

(so, in particular, the x-coordinates of the elements
of Q1 (resp. Q2) are smaller (resp. greater) than
the x-coordinate of pm). By Lemma 4 (i) and (5),
ai ≥ am + 1 > d(

√
n − 1) + 1 for any pi ∈ Q2. From

this and (1), it follows that for any pi ∈ Q2,

d(
√

n − 1) + 1 < ai < c(
√

n − 1) and
1 ≤ bi < c(

√
n − 1),

and hence

|Q2| < (c − d)(
√

n − 1) × c(
√

n − 1)

= c(c − d)(
√

n − 1)2.

From this, we obtain

|Q1| = (n − ℓ(pm)) − |Q2|
>

n

2
− c(c − d)(

√
n − 1)2

>
1

7

(√
10

3
+ 1

)
n +

1

4

=
1

3d2
n +

1

4
(8)

by (2), (3), (4) and the assumption that n ≥ 4.
Connect pm and each element of Q1, and relabel

the elements of Q1 as q1, q2, . . . , q|Q1| in the counter-
clockwise order around pm. We choose q1 in such a
way that all other elements of Q1 lie on the left side
of directed line pmq1.

By Theorem 3 and (8), there exists a path Q =
qi1qi2 . . . qik

of length

k ≥
√

3|Q1| −
3

4
− 1

2
>

1

d

√
n − 1

2
(9)

such that i1 < i2 < · · · < ik, and such that either

(i) ℓ(qi1) < · · · < ℓ(qih
) > ℓ(qih+1

) > · · · > ℓ(qik
) or

(ii) ℓ(qi1) > · · · > ℓ(qih
) < ℓ(qih+1

) < · · · < ℓ(qik
)

holds for some h. Define monotonic subpaths R1 and
R2 by

R1 = qi1qi2 . . . qih
and

R2 = qih
qih+1

. . . qik
,

and also define R1
−1 and R2

−1 by

R1
−1 = qih

qih−1
. . . qi1 and

R2
−1 = qik

qik−1
. . . qih

.

Combining Paths

Let H1 (resp. H2) be closed half-plane bounded by
straight line pmqih

and containing qi1 (resp. qik
). Let

P0 be the vertex set of P , and write

P0 ∩ H1 = {pj1 , pj2 , . . . , pjs},

where j1 < j2 < · · · < js, and

P0 ∩ H2 = {pj′
1
, pj′

2
, . . . , pj′

t
},

where j′
1 < j′

2 < · · · < j′
t

(note that we have pjs = pj′
t

= pm). Then the paths
P1 = pj1pj2 . . . pjs and P2 = pj′

1
pj′

2
. . . pj′

t
are non-

crossing monotonic paths in H1 and H2, respectively
(Figure 4).

mp

P

R1

R2

mp

R1

R2

P2

iq 1

iq h

iq k

iq 1

iq h

iq k

P1

Figure 4

Case 1. R1 is increasing and R2 is decreasing:
In this case, we combine paths P1, pjsqik

and R2
−1

to form a non-crossing monotonic path S1, and com-
bine paths P2, pj′

t
qi1 and R1 to form another non-

crossing monotonic path S2:

S1 = pj1pj2 . . . pjsqik
qik−1

. . . qih
and

S2 = pj′
1
pj′

2
. . . pj′

t
qi1qi2 . . . qih

.

Since

(the length of S1) + (the length of S2)

= [(the length of P) + 1]

+[(the length of Q) + 1]

= (am + 1) + (k + 1)

> d(
√

n − 1) +
1

d

√
n +

3

2
(by (7) and (9))

>

(
d +

1

d

)
(
√

n − 1),

at least one of S1 or S2 has length at least
1
2

(
d + 1

d

)
(
√

n − 1) = c(
√

n − 1), as desired.

Case 2. R1 is decreasing and R2 is increasing:
In this case, we combine paths P1, pjsqih

and R2

to form a non-crossing monotonic path T1, and com-
bine paths P2, pj′

t
qih

and R1
−1 to form another non-

crossing monotonic path T2. The rest of the argument
is quite similar to the argument in Case 1.
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Optimal Straight-line Labels for Island Groups

Arthur van Goethem∗ Marc van Kreveld† Andreas Reimer‡ Maxim Rylov‡ Bettina Speckmann∗

1 Introduction

Maps are used to solve a wide variety of tasks, rang-
ing from navigation to analysis. Often, the quality
of a map is directly related to the quality of its la-
belling. Consequently, a lot of research has focussed
on the automatization of the labelling process (for an
overview see [11]). Surprisingly the (automated) la-
belling of island groups has received little attention so
far. This is at least partially caused by the lack of car-
tographic principles. Though extensive guidelines for
map labelling exist (e.g., [6, 12]), information on the
labelling of groups of islands is surprisingly sparse.

We take an algorithmic approach and focus on opti-
mal solutions to the problem using different settings.
Comparing manual and optimal labels may give in-
sight in subconscious rules applied by cartographers.

Contribution. We define a formal framework for is-
land labelling. The framework spawns a large series
of unexplored computational geometry problems. In
this paper we start by looking at a straight-line la-
bel. In Section 2 we describe two algorithms for a
straight-line label that is, or is not, allowed overlap
with islands. Section 3 discusses several extensions to
these algorithms for closely related problems.

Framework. We assume the input to the island la-
beling problem is a set S of k islands, given as simple
polygons P1, ..., Pk, with n vertices in total. We ab-
stract away from the label itself and assume the label
can be represented by its placement area. To this
end we assume the label has a baseline that is either
straight, circular, or a Bézier curve. The placement
area is defined by perpendicularly extruding the base-
line by a (possibly zero) height. Besides the shape, la-
bels may be optimal with respect to three characteris-
tics. Firstly, the distance to the islands may be com-
puted using different points of measure. Specifically,
these include the centroid of the polygon, the point
on the polygon closest to the label, and the complete
area of the polygon. Secondly, different distance mea-
sures may be used. Three distance measures used in

∗Dept. of Mathem. and Computer Science, TU Eindhoven,
The Netherlands, [a.i.v.goethem|b.speckmann]@tue.nl.
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‡Institute of Geography, Heidelberg University, Germany,
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cartography are included, minimizing: the maximum
distance (min-max ), the sum of distances (min-sum),
the sum of squared distances (min-sum-sq). Lastly,
we (dis)allow overlap of the label with the islands.
For all labels we make the assumption that the label
is long enough to measure distance perpendicularly.

In this paper we focus on straight-line labels opti-
mizing the min-max distance to the closest point of
each island. We are interested in strictly optimal la-
bels to prevent subjectivity. For practical labelling
purposes a trivial discretization may be sufficient.

Related work. Many algorithms have been devel-
oped for labelling maps [11]. Labelling islands groups
has received less attention, but was addressed by Van
Kreveld and Slechter [7]. Their algorithm places a
non-overlapping label in the position minimizing the
maximum distance from the label to each island of the
group. They, however, require labels to be horizontal
and discretize the space of possible label placements.

Several known algorithms can directly be applied
to labelling. All algorithms assume that we are deal-
ing with a point set, which is true if we have a fixed
point of measurement for each island. Furthermore,
all algorithms apply to a straight-line label that may
overlap islands. The rotating calipers algorithm [9]
optimizes the min-max distance in O(n log n) time.
Using known results from Dey [3], Brodal and Ja-
cob [2] and Edelsbrunner and Welzl [4], the label op-
timizing the min-sum distance can be computed in
O(n + k4/3 log k) time. Finally, Deming regression
optimizes the min-sum-sq distance in O(n) time. For
circular arcs the minimum width annulus [1] solves
the min-max distance problem in O(n2) time.

2 Optimal, straight-line label

To compute an optimal, straight-line label we make
use of the arrangement of possible label positions in
dual space [1]. We start with the simple case con-
sisting of a straight-line label that is allowed overlap
with the islands. We focus on the min-max distance
measure to the closest point of each island. An is-
land intersecting the label has distance 0. For now we
assume labels have no height and, hence, are repre-
sented by a single line. As stated before, we assume
we have a set S of k islands, given as simple polygons
P1, ..., Pk, with n vertices in total. We also assume
that all labels are sufficiently long to measure all dis-
tances perpendicular.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Overlapping label. As we are only interested in the
distance to the closest point, we first compute the con-
vex hull of each island in O(n) time [8] and replace
each island by its convex hull. The k convex poly-
gons in primal space, become k funnels in dual space.
The top and bottom boundaries of these funnels are
x-monotone polylines. Between each pair of islands
there exist at most four tangents. Consequently, the
top and bottom of any pair of funnels intersect each
other at most four times. The boundaries of the fun-
nels form a set of 2k x-monotone, 2-intersecting poly-
lines with O(n) vertices total.

For any fixed rotation, the furthest vertex (or edge)
below the label in primal space, is on the upper en-
velope of the lower boundaries in dual space. As all
the funnel-boundaries are 2-intersecting, we can com-
pute the upper envelope of the lower boundaries in
O(n + k log k) time and it has complexity O(n). A
similar argument holds for the furthest vertex above
and the lower envelope of the upper boundaries.

Lemma 1 The optimal solution for a fixed rotation
is halfway between the upper- and lower-envelope.

The optimal solutions for each rotation are located
on a polygonal line that is exactly centered between
the upper- and lower- envelope, and it has O(n) com-
plexity. When an optimal solution intersect all islands
it is not required to have equal distances to either
side. The solution having equal distances to the clos-
est vertex (edge) on either side, however, is also a
valid optimal solution.

Lemma 2 For each segment s of the solution-line we
can compute the optimal position in O(1) time.

Proof. Let xstart be the x-coordinate of the start of
s. Let dstart be the vertical distance to the upper-
(or lower-) envelope at xstart. While we move along s
the distance to the upper envelope changes by a linear
factor c1 in x. For a shift of δ along the x-axis, the
vertical distance in dual space is fs(δ) = dstart+c1∗δ.
The distance to the closest point in primal space is

gs(δ) =
(dstart + c1 ∗ δ)2
(xstart + δ)2 + 1

(1)

The optimal position is at the minimum over the do-
main given by segment s. This minimum can be at
an endpoint of s or in the middle. �

Theorem 3 We can compute the optimal straight-
line label minimizing the maximum minimum dis-
tance over all islands in O(n+ k log k) time.

Intersection-free label. Positions exactly halfway
between the upper- and lower-envelope may result
in labels that overlap one or more islands. For

(a)
v w

(b)

Figure 1: (a) The section of the arrangement (red)
between vertices v and w, with C = 7 intersections.
(b) The number of edges traversed to insert a new line
with c intersections is O(c).

intersection-free labels we require more information.
An optimal intersection-free label need not necessar-
ily have an equal distance to the furthest closest point
on either side. Therefore, we compute the complete
arrangement of all 2k boundaries. In this arrange-
ment we find the optimal intersection-free solution in
O(nk + k2 log k) time.

Lemma 4 The arrangement formed by all 2k bound-
aries can be computed in O(nk) time.

Proof. Make a single sorted list V of all vertices
(excluding intersections), sorted along the x-axis, in
O(n log k) time by merging the vertex-lists of the 2k
boundaries. Sort all boundaries by decreasing slope
of their first segment in O(k log k) time.

We compute the complete arrangement by perform-
ing a sweep along the x-axis. Define a section (v, w)
of the complete arrangement as the arrangement con-
sisting of all vertices u with vx ≤ ux < wx and all
maximal segments of edges having endpoints s, t, such
that vx ≤ sx < wx and vx ≤ tx < wx (see Fig. 1(a)).

Let vi, wi+1 be two consecutive vertices in V hav-
ing index i and i + 1 respectively. In step i of the
sweep we compute section (vi, wi+1) of the complete
arrangement. The start and end of the arrangement
are included by adding dummy vertices to V at mi-
nus infinity and infinity. Each section is computed in
O(k+C) time, where C is the number of intersections
in this section.

As each step is between consecutive vertices in V ,
within each section all boundaries form straight lines.
Within a section (v, w) we introduce all boundary-
lines in sorted order (being sorted bottom to top at
vx). This order is known at the start of the algorithm
and maintained during the sweep.

When introducing a line we find all intersections
with the previously introduced lines. To find the in-
tersections we move in a clockwise fashion through
the arrangement built so far (see Fig. 1(b)). Any
traversed line is either a boundary introduced earlier
(starting lower) and ending higher, or the “virtual
line” at wx. Hence, the number of distinct lines we
traverse is at most O(c), where c is the number of in-
tersections we detect by introducing this line. As lines
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are 1-intersecting, the traversed edges in the worst
case form a Davenport-Schinzel-sequence [10] of or-
der 2 using c symbols, having complexity O(c). Thus,
when introducing a single boundary-line we spend at
most O(c) time.

The total number of intersections in a section is
C. We may spend an extra constant amount of work
per boundary, so introducing all lines takes O(k+C)
time. While introducing the lines we use insertion sort
to obtain the sorted order at the end of each section
in O(k + C) time as well.

Because the number of intersections in the complete
arrangement is bounded by O(k2), the algorithm runs
in O(nk + k2) = O(nk) time. �

During creation of the arrangement we also keep
track of the left-most point of each face. This point is
uniquely defined as all lines are strictly x-monotone.
The non-closed faces on the left of the arrangement
maintain pointers to both infinite rays. We also store
for each face if it is covered by a funnel. Faces cov-
ered by a funnel are defined to be illegal. An edge
of the arrangement separating two illegal faces is also
considered illegal, all other edges are legal.

Lemma 5 The centerline may cross the arrangement
O(nk) times.

Lemma 6 The centerline can be inserted in the ar-
rangement in O(nk) time.

If, for a fixed rotation, the point on the centerline
is illegal, then clearly the closest legal point with the
same rotation is optimal. The closest legal points form
subedges on the edges of the arrangement (see Fig. 2).

Lemma 7 We can find the closest legal subedges
above the centerline in O(nk + k2 log k) time.

Proof. Remove from the computed arrangement all
edges that are illegal in O(n + k2) time. Let a chain
be a maximal series of consecutive edges connected
by degree two vertices. The resulting arrangement
has, excluding the centerline, O(k2) non-intersecting
chains with O(n+k2) vertices total. We merge all ver-
tices of the chains into a sorted list in O((n+k2) log k)
time. Now we merge the sorted list with the sorted

Figure 2: Centerline (blue), illegal faces (grey) and
the closest legal subedges (red).

vertices of the centerline in O(nk) time to get a sorted
list of all possible events.

We create a red-black tree (RB-tree) of all chains
starting at the left-most end of the arrangement
sorted by vertical order in O(k log k) time. The cen-
terline is also added to the RB-tree. To all leafs of
the RB-tree we add pointers to the neighboring leafs
so that we can query for neighbors in O(1) time.

We now move a sweepline over all vertices using the
sorted list. Two types of events may occur. Firstly,
when the first vertex of a new chain is reached, we
add the chain to the red-black tree in O(log k) time.
Similarly, when the last vertex of a chain is reached,
we remove it. Secondly, when a chain intersects the
centerline, we switch their positions in the red-black
tree in O(1) time.

At each event we can in O(1) time determine the
closest legal chain above the centerline. This may
possibly be the centerline itself if it currently legal.
Hence, we can trace the subedges above the centerline
in O(nk + k2 log k) time. �

The closest point to the centerline may be on the clos-
est legal subedge above or below the centerline or may
be on the centerline itself. However, the number of
times where the point switches between these lines is
bounded by O(nk).

Lemma 8 The closest legal line can switch at most
O(nk) times between the lower and upper legal line.

Proof. Let W be the ordered set of vertices of the
complete arrangement (including centerline) by x-
coordinate. Let v and w be two consecutive ver-
tices in W and vx 6= wx. We define a slab as the
set of maximal segments of edges having endpoints
s, t with sx = vx and tx = wx (see Fig. 3). There
are O(nk) vertices in the arrangement, so also O(nk)
slabs. For each slab all the segments are straight and
non-intersecting. The closest legal point can switch
at most once per slab and, thus, O(nk) total. �

We can easily find the points on the centerline
where the closest legal line changes and insert an ex-
tra vertex on the centerline. For each new edge of the
centerline, the distance to the furthest closest point

v

w

Figure 3: A slab of the complete arrangement (blue)
and the belonging segments of edges (red). There are
O(nk) slabs in the complete arrangement.
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changes linearly by c1 and the distance to the closest
legal point also changes linearly by c2. Hence, simi-
lar to the overlapping version, we can create a closed
formula for each segment s based on the shift δ along
the x-axis.

gs(δ) =
(dstart + ostart + (c1 + c2) ∗ δ)2

(xstart + δ)2 + 1
(2)

Theorem 9 We can compute the optimal straight-
line label optimizing the min-max distance that is
non-overlapping in O(nk + k2 log k) time.

3 Extensions

In the previous section we have given algorithms for a
(non-)overlapping label using the min-max distance.
The basic idea can also be applied to solve different
problems. In this section we give two examples.

Minimizing the sum of distances. It is easy to
show that an optimal solution has equally many is-
lands placed to either side of the label (and may possi-
bly intersect some others). Hence, for a fixed rotation
the optimal (possibly overlapping) solution can easily
be found in O(n + k log k) time. For an intersection-
free label in a fixed rotation, the optimal placement
is the legal placement closest to the above solution.

In both cases it holds that if an optimal solution
exists not tangent to any island, then there is also an
optimal solution that is. Thus, the optimal solution in
dual space is located on the edges of the arrangement.

We can compute the arrangement in O((n + k2) ∗
log k) time using a sweep line. While sweeping the ar-
rangement we keep track of the faces having an equal
number of islands above and below it. We compute
the summed distance at the start and its linear change
in the first slab in O(k) time. For each event we up-
date the linear change and the summed distance at
the start in O(1) time. We can compute the optimal
position per edge in O(1) time. Finding the closest le-
gal edge can be done in O(log k) time as well. Hence,
in O((n+k2) log k) time we can find the optimal non-
overlapping label.

Non-zero-height labels. Zero-height labels are not
useful for real labelling. For an overlapping label, the
optimal non-zero-height label is always centered on
the optimal zero-height solution.

If we wish to place an intersection-free label of
height h, this is equivalent to offsetting all islands
by h/2 and computing a zero-height label. The ver-
tices of the islands in primal space, however, become
circular arcs. Consequently, in dual space we do not
have polylines of line-segments, but of curves. A ver-
tex p = (px, py) of the top side of an islands be-
ing offset by a distance h/2 becomes a curve p∗ =
px ∗ x − py −

√
x2 + 1 ∗ h/2 in dual space. Ver-

tices on the bottom side of islands become curves
p∗ = px ∗ x− py +

√
x2 + 1 ∗ h/2.

We can still compute the arrangement, the center-
line, and the closest legal segments in O(nk+k2 log k)
time. For each segment we can in O(1) time compute
the optimal position, so we can find the global opti-
mum in O(nk+k2 log k) time. A similar argument can
be made for the min-sum distance measure resulting
in an O((n+ k2) log k) time algorithm.

Future work. In this paper we gave an O(nk) algo-
rithm to compute the arrangement. Technically, this
is not necessary as a sweep-line algorithm can obtain
the same O(nk + k2 log k) time-bounds for the com-
plete algorithm. However, the entire first section of
our algorithm runs in O(nk) time. In the worst case
the centerline may intersect the arrangement at most
O(nk). This bound is also achievable. The final extra
log-factor in O(k2 log k) only turns up once. In future
work we might investigate if this log-factor can also
be removed, reaching the O(nk) runtime. Current in-
vestigations, however, indicate a possible relation to
the Sorting-(X+Y) problem [5].
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Clustered Edge Routing∗

Quirijn W. Bouts† Bettina Speckmann†

1 Introduction

Graphs are an important tool to express relational
data. The classic method to depict graphs is a node-
link diagram where vertices (nodes) are associated
with each object and edges (links) connect related
objects. Node-link diagrams represent graphs in the
most direct way. However, they quickly appear clut-
tered and unclear, even for moderately sized graphs.
If the positions of the nodes are fixed – because they
represent geo-referenced data or are laid out according
to functional requirements – then suitable link routing
is the only option to reduce clutter.

We present a novel link clustering and routing al-
gorithm which respects (and if desired refines) user-
defined clusters on the links. Our input is a node-
link diagram with fixed node positions and optionally
a user-defined clustering on the links and/or a set of
disjoint polygonal obstacles. Our clustering method is
based on a well-separated pair decomposition (WSPD)
and we route link clusters individually on a sparse
visibility spanner. To completely avoid ambiguity we
draw each individual link and guarantee that clus-
tered links follow the same path in the routing graph.
(We call the edges of the routing graph ‘edges’ and
use ‘links’ for the input from the node-link diagram.)
Our algorithm also ensures that clusters are not drawn
close to nodes and do not cross obstacles (see Fig. 1).

Holten and van Wijk [11] formalized four edge com-
patibility measures which indicate how similar links
are. In Section 2 we argue that the clusters induced
by a WSPD consist of compatible links according to
the measures of Holten and van Wijk. Users can hence
simply vary the separation constant of the WSPD to
find a balance between few clusters of less compatible
links and many clusters of very compatible links.

In Section 3 we show how to route the link clus-
ters defined by the WSPD along the greedy sparsifi-
cation of the visibility graph. On the complete graph
a greedy sparsification has several desirable proper-
ties, such as a provable angle constraint as well as low
total weight. Under realistic input assumptions we
can prove that these properties still hold for the spar-
sification of the visibility graph. In Section 4 we de-

∗A full version of this abstract will appear in Proc. 8th IEEE
Pacific Visualization Symposium, 2015.
†Dept. of Mathematics and Computer Science, TU Eind-

hoven, The Netherlands, [q.w.bouts|b.speckmann]@tue.nl.
Supported by the Netherlands Organisation for Scientific Re-
search (NWO) under project no. 639.023.208.

Figure 1: Clustered edge routing, one cluster in red.

scribe our complete routing algorithm, including pre-
processing, link ordering, and crossing minimization.

Related work. Our work is closely related to the ap-
proach by Pupyrev et al. [2, 16] who use a routing
graph based on a Yao-spanner of the visibility graph.
The edges of a Yao-spanner can get arbitrarily close
and angles can be arbitrarily small. Pupyrev et al.
hence go through an extensive and computationally
expensive iterative optimization step to improve it.
Dwyer and Nachmanson [9] also use visibility graphs,
albeit approximate ones, to route edges. They de-
scribe two approaches. The first uses a spatial decom-
position and requires node movement. It can hence
not be used to draw graphs with fixed node positions.
The second approach also uses the Yao-spanner. All
these techniques route links by using shortest paths
on the routing graph. Link clustering is hence simply
induced by the routing graph and does not necessarily
satisfy any similarity measures. Furthermore, neither
of these methods supports user-defined link clusters.

Dwyer et al. [8] integrate link routing techniques
into a force-directed layout. Their method requires a
feasible initial routing and moves vertices.

Various techniques reduce link clutter by bundling
links which are “close”. Gansner et al. [10] use a cir-
cular graph layout and route links either on the inside
or the outside of the circle. Holten and van Wijk [11]
describe a force-directed approach and use the afore-
mentioned compatibility measures to determine the
strengths of forces. Cui et al. [6] propose a geometry-
based approach which uses a control mesh. Lambert
et al. [13] use a combination of the Voronoi diagram
and a quadtree as a multi-resolution grid for rout-
ing links. Bundling methods generally draw bundled
links on top of each other. Hence it can be difficult
to decide unambiguously if two nodes are connected.
Luo et al. [14] propose a method which is ambiguity-
free, but bundled links need to share a common node.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Clustering links via a WSPD

The well-separated pair decomposition (WSPD) was
introduced by Callahan et al. [5]. Two point sets A
and B are well-separated if they can be enclosed in
two circles of equal diameter which are “far apart”
relative to their diameter. More precisely, point sets
A and B, with bounding boxes R(A) and R(B), are
said to be s-well-separated for some separation con-
stant s > 0 if R(A) and R(B) can be enclosed in
two disjoint equal diameter circles CA and CB and
the distance between CA and CB is at least s times
the diameter of CA. The WSPD of a set of points P
with separation constant s is a sequence of m pairs
{Ai, Bi} of nonempty subsets of P such that

1. for each 1 ≤ i ≤ m, Ai and Bi are well-separated
with respect to s.

2. for any two distinct points p and q there is exactly
one pair (Ai, Bi) such that p is in one set and q
in the other.

The number of well-separated pairs m is also called
the size of the WSPD. If the separation constant s
is indeed constant we can compute a WSPD of size
O(n) on a point set in the plane in O(n log n) time,
see [15] Chapter 9. Every well-separated pair (Ai, Bi)
induces a link cluster: each link with one endpoint in
Ai and the other endpoint in Bi is part of the cluster.

Link compatibility measures. Holten and van Wijk
introduced four measures which concern the angle,
scale, and position of a pair of links, as well as the vis-
ibility between them. Consider the s-well-separated
pair {A,B}. We examine the compatibility measures
on any two links e = (p0, p1) and f = (q0, q1) with
p0, q0 ∈ A and p1, q1 ∈ B. We assume that the link e
is at most as long as the link f . We use D to denote
the diameter of the circles CA and CB .

Angle compatibility. Links in the same cluster
should have a similar angle. We define the angle α
between two non-parallel links as the smallest angle
between the lines induced by the links. The angle of
parallel links is 0.

Lemma 1 The angle α between e and f is bounded
by α ≤ 2 · tan−1( 1

s ) for s ≥ 1.

α

p0

q0

q1

p1

rt

Proof. The figure shows a
worst case configuration of
e and f with respect to α.
We have |(p0, t)| ≤ 0.5D and
|(t, r)| ≥ 0.5sD as rough
bounds. We can now bound α by 2 · tan−1( 1

s ). �

Scale compatibility. Links in the same cluster
should have similar length.

Lemma 2 The difference in length of e and f is at
most 2 ·D. The length ratio of f to e is bounded by
|f |
|e| ≤ s+2

s .

q0 q1qm

p0
pm

p1Position compatibility. Links
which are close to each other
should be more likely to end up
in the same cluster. Holten and
van Wijk measure “close to each
other” by considering the distance between the mid-
points pm and qm of links e and f in relation to the
average link length of e and f .

Lemma 3 The difference in position of links e and
f with midpoints pm and qm is |(pm, qm)| ≤ D. The
ratio of the difference in position to the average length

is bounded by |pmqm|
(|e|+|f |)/2 ≤ 1

s .

pm q′0 q′m q′1

q1q0

p1p0

qm

Visibility compatibility.
Let q′m be the point on
the line induced by e that
when projected onto f co-
incides with its midpoint
qm. The visibility compatibility of e with f is defined
by the normalized distance between the midpoint of e
(pm) and q′m. To normalize this distance we divide by
the length of the segment q′0q

′
1 which when projected

onto the line induced by f coincides with f .

Lemma 4 Let q′0, q
′
1 and q′m be the points on the line

induced by e which, when projected onto f , coincide
with q0, q1, and qm. The visibility compatibility is

bounded by
|(pm,q′m)|
|(q′0,q′1)|

≤ 1
s for s > 1.

pm q′m

q1q0

p1

p0

qmpm

α
q′0

q′1
Proof. Let α be the angle
between the lines induced
by e and f which using
Lemma 1 we can bound as
α < 2 tan−1( 1

s ). Let pm
be the projection of pm
onto the line induced by
f . We have |(pm, qm)| ≤ |(pm, qm)| ≤ D by the trian-
gle inequality. This implies |(pm, q′m)| ≤ D

cos(α) . From

the definition of s-well-separated we have |(q0, q1)| ≥
sD, which implies that |(q′0, q′1)| ≥ sD

cos(α) . We now

have
|(pm,q′m)|
|(q′0,q′1)|

≤ D
cos(α) ·

cos(α)
sD = 1

s . �

Increasing the separation constant s of the WSPD
improves all four compatibility measures. Users can
hence vary s to find a balance between few clusters of
less compatible links and many clusters of very com-
patible links. If the user has specified clusters we test
if they are also spatially clustered. If this is not the
case, that is, if the endpoints of the clustered links
are not well-separated, we can refine the user-specified
cluster into compatible clusters using the WSPD.
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3 The routing graph

We add a small polygonal obstacle around each node,
merge those obstacles which are “too close”, and en-
close merged obstacles within their convex hull. We
use a combination of Voronoi and additional in-cell
edges to connect nodes with their obstacle vertices.

Let dG(p, q) denote the shortest-path distance be-
tween two vertices p and q in a graph G = (V,E).
A geometric t-spanner (t > 1) of G is a graph G′ =
(V,E′ ⊆ E) such that for any two vertices p, q ∈ V ,
dG′(p, q) ≤ t · dG(p, q). The so-called greedy spanner
is constructed by considering all edges e = (p, q) ∈ E
in non-decreasing order and adding them to E′ if and
only if dG′(p, q) > t · dG(p, q). For our routing graph
we use the greedy spanner to sparsify the visibility
graph. We also include all original obstacle edges.

The visibility graph can be computed in O(n2 log n)
time using a sweepline approach (see [7] Chapter 15).
The greedy spanner can be computed in O(n2 log n)
time [3]. We use the O(n2 log2 n) algorithm of
Bouts et al. [4] which is faster in practice.

The greedy sparsification of the complete graph is
very sparse, it guarantees a lower bound for the an-
gles between nearby edges, and it has a total weight
of O(MST ), where MST denotes the weight of the
minimum spanning tree ([15] Chapter 6, 14). A lower
bound on the angle between adjacent edges is impor-
tant when routing unambiguously. We sketch the ar-
gument for the greedy spanner and illustrate how (un-
der realistic input assumptions) a similar proof holds
for our routing graph.

Let (v, u), (v, w) be two edges in the greedy spanner
with angle α at v and let (v, u) be considered before
(v, w) by the algorithm (|vu| ≤ |vw|). For α < π

4 we
have that |uw| < |vw| and hence there is a t−path
between u and w when considering (u, v). Further-
more, we have t > 1/(cosα − sinα). Hence, if α is
too small in relation to t, we have |vu|+ t|uw| < t|vw|
contradicting that (v, w) is in the greedy spanner and
implying a lower bound on α.

u

w

tk
2√
2k

≥

tk
2 + 2k≥

We now assume square axis-
aligned obstacles with sidelength
k, which are separated by at least
1
2 tk. Hence the sparsification of
the visibility graph must include
all obstacle edges since no other
vertices are sufficiently close to
form a t−path between their vertices. Let δ(u,w) de-
note the length of the shortest path between u and w
in the visibility graph. Because of our input assump-
tions δ(u,w) is at most a small constant factor larger
than |uw| (see figure). Hence the same argument as
above applies, with slightly worse constants.

By adjusting the dilation t, the user can find a bal-
ance between a more direction preserving or a cleaner,
more abstract routing graph.

4 Routing and ordering links

The routing should respect the clustering. Using the
nearest pair of nodes (one from each set of the cor-
responding well-separated pair) we determine merge
points. All links in a cluster are routed via their merge
points to ensure that they share a common sub-path.

To avoid unambiguity we draw links individually
along the routing graph edges. Inspired by [16] we use
bi-arcs to allow them to smoothly change directions at
vertices and to ensure that they cross at large angles.
Clustered links are drawn together to form a ribbon of
links. This leads to a two-level ordering problem. We
order both ribbons and the links within them to min-
imize crossings. We can order the links optimally in
linear time since they do not pass through nodes [16].

Because of the tree-like structure of the ribbons or-
dering them among each other is NP-complete. We
prove this by reduction from the 1-sided crossing min-
imization problem [12]: Given a two-layered (bipar-
tite) graph G = ({L0, L1}, E) and an ordering x0 of
vertices on layer L0, is there an ordering x1 of L1 such
there are at most k crossings?

Definition 1 (Ribbon ordering problem) Given
the ribbons routed through vertex v. Is there an
ordering along its edges with at most k crossings?

Lemma 5 Ribbon ordering is NP-Complete.

Proof. Consider an arbitrary instance of the
one-sided crossing minimization problem G =
({L0, L1}, E) where L0 is the fixed layer. We denote
the fixed vertices with v̄1 . . . v̄|L0| and those in L1 by
v1 . . . v|L1|. We construct an instance of the ribbon or-
dering problem as illustrated in Fig. 2. We add edges
e1 . . . e|L0| on the left side corresponding to L0 and
one edge on the right side. We add ribbons r1 . . . r|L1|
to this edge corresponding to L1. For each edge in
(v̄i, vj) ∈ E we add a link from ribbon rj to ei.

We can now solve the original instance by finding an
order of ribbons on the right edge. Since ribbon order-
ing is clearly in NP this proves NP-completeness. �

This close relation to 1-sided crossing minimization
allows many of its heuristics to be adapted to rib-
bon ordering. For our implementation we adapted the

L 0 L 1

Figure 2: A 1-sided crossing minimization problem
and the corresponding ribbon ordering instance. The
four left edges act as a fixed layer.

151



31st European Workshop on Computational Geometry, 2015

(a) (b)

Figure 3: The TLR4 graph from [1] (91 nodes, 124 links), rendered by (a) Cerebral [1] and (b) our algorithm.
Closeups of the same region show the ambiguity problems arising from overlapping links in the original drawing.

Barycenter heuristic [12] which works by calculating
the “average ranking” for each ribbon.

We demonstrate our method on the TLR4
dataset which represents interactions between differ-
ent biomolecules. Barsky et al. [1] used their Cere-
bral software to find node positions and used a simple
spline based heuristic to draw links (see Fig. 3(a)).
Fig. 3(b) shows the result of our algorithm on their
node layout. Clusters were defined by experts and
refined where needed using a separation of 1. The
sparsification was computed for a dilation of t = 1.8.

Acknowledgements. The authors would like to
thank Tim Dwyer for fruitful discussions and Tamara
Munzner for the Cerebral use case.
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Mosaic Drawings and Cartograms

R. G. Cano∗ K. Buchin‡ T. Castermans‡ A. Pieterse‡ W. Sonke‡ B. Speckmann‡

Figure 1: US election 2012, electorial college votes. Diffusion cartogram by M. Newman (Univ. Michigan),
square mosaic cartogram (Wikipedia), square and hexagonal mosaic cartograms computed by our algorithm.

1 Introduction

Cartograms visualize quantitative data about a set
of regions such as countries or states by scaling each
region such that its area is proportional to its data
value. There are several different types of cartograms
and some algorithms to construct them automatically
exist. The most common cartograms are contiguous
area cartograms [8] (Fig. 1 left). Here the regions
are deformed in such a way that adjacencies are kept.
Contiguous area cartograms perform well if the data
values are positively correlated to the land areas of
the input regions, but producing good cartograms if
this is not the case remains a challenge.

The size of regions in contiguous area cartograms
is generally hard to judge. To remedy this situation
several types of cartograms depict regions using sim-
ple geometric shapes like disks, squares or rectangles.
When using rectangles, adjacencies and relative posi-
tions can be maintained [2, 10]. However, the rectan-
gular shape is not very recognizable and hence Mum-
ford et al. [4, 5] initiated the study of rectilinear car-
tograms where each region is represented by a recti-
linear polygon. But the areas of general rectilinear
polygons are again difficult to estimate and compare.
This is much easier if the polygons are composed of
a small number of unit squares (Fig. 1 middle two).
We focus on this type of cartograms, or more gener-
ally cartograms which use multiples of simple tiles –
usually squares or hexagons (Fig. 1 right) – to repre-
sent regions. In absence of a dedicated name in the
literature we call such cartograms mosaic cartograms.

Mosaic cartograms using squares have been popu-
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rgcano@ic.unicamp.br. Supported by FAPESP under
projects 2012/00673-2 and 2013/23571-3.
‡Dept. of Mathematics and Computer Science, TU Eind-
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K.B. and B.S. supported by the Netherlands Organisation
for Scientific Research (NWO) under project no. 612.001.106
and 639.023.208, respectively.

larized by the New York Times, usually in the context
of the US elections, but also to show changing de-
mographics. Mosaic cartograms using hexagons are
less frequent, examples are the “Indices of Depriva-
tion 2010” by the Leicestershire County Council.

Mosaic cartograms communicate data well that
consist of, or can be cast into, small integer units
(for example, electorial college votes), they allow users
to accurately compare regions, and they can often
maintain a (schematized) version of the input regions’
shapes. We propose the first method to construct
mosaic cartograms fully automatically. To do so, we
first introduce mosaic drawings of triangulated pla-
nar graphs. We then modify mosaic drawings into
mosaic cartograms with zero cartographic error while
maintaining correct adjacencies between regions.

Quality criteria. There are several quality criteria
for (mosaic) cartograms. One of the most important
ones is the cartographic error, which is defined for
each region as |Ac − As| /As, where Ac is the area of
the region in the cartogram and As is the specified
area depending on the data value to be shown. In a
mosaic cartogram a region is represented by an edge-
connected set of tiles, which we call a configuration.
Each configuration must be simple, that is, contain no
holes. The mosaic resolution measures the (maximum
and average) number of tiles used per region. We
consider the following quality criteria in this paper:

• Average and maximum cartographic error

• Correct adjacencies of configurations: two config-
urations are adjacent if and only the correspond-
ing input regions are adjacent

• Shape of the regions

• Relative positions of regions

• Mosaic resolution

It is generally challenging to simultaneously satisfy all
criteria well. We decided to enforce correct adjacen-
cies in our algorithm, that is, we produce only mosaic

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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cartograms which have exactly the same configuration
adjacencies as the corresponding regions of the input
map. There is a clear trade-off between mosaic reso-
lution and recognizability of the map. A low mosaic
resolution, that is a small to medium number of tiles
per region, allows users to explicitly count tiles and
compare regions. A high mosaic resolution makes it
easier to preserve shapes and relative positions and
to achieve zero cartographic error. Fortunately our
method can create mosaic cartograms with zero car-
tographic error for relatively low mosaic resolutions.

Most mosaic cartograms which are made by hand
do neither preserve the adjacencies of all input re-
gions nor their shapes. A common semi-automated
approach is to take a map or a contiguous area car-
togram and to overlay it with a suitable grid. This
requires a rather high mosaic resolution, since other-
wise rounding errors will easily destroy or create ad-
jacencies. Furthermore, mosaic cartograms created in
this way usually do not have zero cartographic error.

2 Mosaic Drawings

We define mosaic drawings for plane triangulated
graphs, that is, planar graphs with a given embed-
ding where every interior face is a triangle. Mosaic
drawings are drawn on a tiling of the plane. Of par-
ticular interest are the uniform, and especially the
regular tilings, although other types of tilings might
also result in intriguing drawings. There are three
types of regular tilings: the triangular, the square,
and the hexagonal tiling. The triangular tiling uses
two different rotations of the basic triangular shape
and hence is visually a little more complex than the
square or the hexagonal tiling.

We call a set of edge-connected tiles of a tiling T a
configuration. We say that a configuration C is simple
if its tiles are simply connected (C has no holes). Two
configurations C1 and C2 are adjacent if and only if
there is at least one tile t1 ∈ C1 and at least one tile
t2 ∈ C2 such that t1 and t2 are edge-connected. A
mosaic drawing DT (G) of plane triangulated graph
G = (V,E) on T represents every vertex v ∈ V by a
simple configuration C(v) of edge-adjacent tiles from
T in such a way that two vertices v and u of G are
connected by an edge e = (v, u) if and only if the con-
figurations C(v) and C(u) are adjacent (see Fig. 2).

Figure 2: Simple mosaic drawing.

We say that
a mosaic draw-
ing is simple if
the union of all
configurations
is simply con-
nected, that is,
the drawing has
no holes. Mosaic drawings are a type of contact rep-
resentation, since they do not draw edges explicitly,

but imply them by the contact of the configurations.
For which tilings do mosaic drawings exist? Below

we show – with the help of results from the Graph
Drawing and VLSI layout literature – that simple
mosaic drawings exist for both square and hexagonal
tilings. For a given (style of) mosaic drawings we can
then consider various quality criteria, such as the size
(number of tiles) of the drawing and the area (number
of tiles inside a bounding box).

Square and hexagonal tilings. We show that any
plane triangulation has a mosaic drawing on a square
and hexagonal tiling via orthogonal (grid) drawings [6]
of a graphs. Here the vertices are placed on an integer
grid and the edges are routed along the grid.

Given a plane triangulation we can obtain a mosaic
drawing in the following way as illustrated in Fig. 3:
We first take the weak dual of the triangulation, which
has a vertex for each triangle of the triangulation, and
an edge for any pair of adjacent triangles. The dual
of a triangulation has a maximum degree of three and
can be laid out orthogonally on a grid. To obtain a
mosaic drawing on a square tiling, we represent every
grid point of the orthogonal drawing by four squares
of the tiling and consistently distribute them to the
configurations of the triangulation. On a hexagonal
grid we can proceed in exactly the same way but shear
the orthogonal drawing; alternatively we can directly
embed the dual on a hexagonal grid [9].

The construction above shows that we can obtain
mosaic drawings that are linear in the size of the cor-
responding orthogonal drawings. This allows us to
derive complexity results for mosaic drawings from
existing results for orthogonal drawings. Orthogonal
drawings on small-area grids have been studied ex-
tensively [6, 12]. For instance, if the triangulation
induces an outerplanar graph, we can obtain a mo-
saic drawing of relatively small area by making use of
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Figure 3: Transformation from orthogonal drawing to
mosaic drawings via the (weak) dual.

154



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

10

1
2 3

4 5
6 7

8
9 1011

12

1

2

3

4
5

6
7
8

9
10

11
12

1

2

3

4
5

6
7
8

9
11

12

1

3 6
7

8
9

5
4

2

10

11

12

4

6
7
8

9

12

2
5

10

3

1

11

4

6
7
8

9

10
12

1

2

3

5

11

4

6
7
8

9

12

2
5

10

3

1

11

Figure 4: Constructing simple mosaic drawings for square and hexagonal tilings via an orderly spanning tree
(inspired by [3]).

the fact that the dual is a binary tree [7]. However,
minimizing the size (area, length, etc.) of an orthogo-
nal drawing is NP-hard even if the orientations of the
edges used are already given [1, 13], which makes it
unlikely that we can efficiently minimize the area of a
mosaic drawing.

3 Mosaic cartograms

Our input is now a triangulated planar graph G =
(V,E) together with integer weights w(v) for each ver-
tex v ∈ V . A mosaic cartogram for G is a simple
mosaic drawing of G where each configuration C(v)
consists of exactly w(v) tiles for each vertex v ∈ V .
The construction of mosaic drawings from orthogonal
drawings of the dual as sketched above does not nec-
essarily produce simple mosaic drawings. While we
could extend this construction and fill faces in a con-
sistent way, we instead choose an alternative method
which is based on orderly spanning trees [3] and pro-
duces compact simple mosaic drawings (see Fig. 4).

Orderly spanning trees are spanning trees with cer-
tain order relations between the nodes. Chiang et
al. [3] show how to compute an orderly spanning tree
ST for a planar triangulation G. They then con-
struct a (vertical) visibility drawing for ST , which is
stretched into a 2-visibility drawing of G. They grow
horizontal branches to fill up gaps and finally shrink
thick branches to height 1. The result is a square mo-
saic drawing of G. Since at most three regions meet
at each intersection, we can directly shear the same
drawing onto a hexagonal grid and so obtain a hexag-
onal mosaic drawing with the same complexity.

To compute mosaic cartograms, we start with a
mosaic drawing of the (augmented) dual of the in-
put map. Unfortunately the orderly spanning trees
created by Chiang et al. [3] have a tendency to “curl
inwards”. The resulting mosaic drawings often do not

retain any of the relative positions of the input nodes
and are hence a rather poor starting point for mosaic
cartograms (see Fig. 5 left). However, the spanning
trees induced by a Schnyder labeling are also orderly
spanning trees [11] and lead to mosaic drawings which
do capture a significant part of the relative positions
of the input (see Fig. 5 right top).

We use an iterative method to grow (or shrink) the
configurations according to the input data. While
doing so, we maintain the correct adjacencies at all
times. We use so-called guiding shapes – configura-
tions which represent the desired final state of each
configuration C(v) – to slowly nudge each configura-
tion towards the correct number of tiles and the cor-
rect shape. Guiding shapes are iteratively moved us-
ing a force-directed approach to reduce overlap while
moving the configurations into appropriate relative
positions. Note that the configurations never over-
lap, only their guiding shapes might. We maintain a
proper mosaic drawing at all times, although it might

Figure 5: US: mosaic drawing based on Chiang et
al. [3] (left) and on Schnyder labeling (top right), area
cartogram with 1 square ≈ 5000 km2.
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Figure 6: EU GDP in 2013: 1 hexagon per 20 billion USD, 1122 tiles, 1 incorrect hexagon (left), 1 hexagon per
15 billion USD, 1499 tiles, no error (right).

not always be simple. Each configuration, however, is
always simple. This process stops as soon as no more
progress can be made. Now most configurations have
a good shape and the correct number of tiles, a few
might have some tiles too many or too few. The final
step of our algorithm uses a minimum cost flow for-
mulation to assign the correct number of tiles to each
configuration. This process maintains the correct ad-
jacencies and disturbs the shapes as little as possible.
It also removes any holes in the drawing which might
have arisen during the iterative resizing and moving.

4 Future Work

An obvious direction for future work are other types
of tilings, most notably the triangular tiling. Our
method in principle extends to any uniform tiling, if
one interprets it as a square or hexagonal tiling by
grouping adjacent tiles appropriately (Fig. 7). How-
ever, more direct approaches and corresponding size
and area bounds would be of interest.

Figure 7: Interpreting the hexagonal tiling as a square
tiling and the trihexagonal tiling as a hexagonal tiling.
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Long Paths in Line Arrangements

Udo Hoffmann∗† Linda Kleist∗ Tillmann Miltzow ‡

Abstract

An arrangement of lines partitions the plane into ver-
tices, edges and faces. A (dual) path in a line arrange-
ment is a sequence of faces where every two consecu-
tive faces share an edge and each face occurs at most
once. We prove that every arrangement of n lines has
a path of length n2/3−O(n). This is tight up to the
linear order term.

We also consider arrangements of red and blue lines,
where our paths must cross red and blue edges alter-
natingly: We describe an example of a line arrange-
ment with 3k blue and 2k red lines with no alternating
path longer than 14k. Moreover, we show that any ar-
rangement with n lines has a coloring such that there
exist an alternating path of length Ω

(
n2/ log n

)
.

1 Introduction

A line arrangement A is a set of n lines in the Eu-
clidean plane. The set of lines partitions the plane
into vertices, edges, and faces. A line arrangement
is called simple if no two lines are parallel and every
point of the Euclidean plane is covered by at most 2
lines. A simple arrangement has

(
n
2

)
+ n + 1 faces.

A (dual) path in a line arrangement is a sequence of
faces such that consecutive faces share an edge and no
face appears more than once. The length of a path is
defined as the number of involved faces. We are inter-
ested in bounds on the minimum length of a longest
dual path in arrangements with n lines, i.e., in the
function

f(n) := min
A∈An

max
P∈A
|P |

where P is a dual path in A, |P | its length, and An

the set of simple arrangements with n lines.
Aichholzer et al. [1] introduce this problem and

show that each simple arrangement of n lines admits
a path of length n2/4 − O(n). As an upper bound,
they show that there are arrangements with n lines
where the longest path is of length n2/3 +O(n).

Our main result is a (up to lower order terms) tight
lower bound on the length of a longest path.

∗{kleist,uhoffman}@math.tu-berlin.de, Department of Ma-
thematics, Technische Universität Berlin
†supported by the Deutsche Forschungsgemeinschaft within

the research training group ‘Methods for Discrete Structures’
(GRK 1408).
‡t.m@fu-berlin.de, Department of Computer Science, Freie

Universität Berlin

Theorem 1 In a simple arrangement of n lines, there
exist a path of length 1/3n2 −O(n).

There also exist a colored version of the problem:
The lines are colored (with red and blue), and a dual
path has to be alternating, that is it does not traverse
two edges of the same color consecutively. For this
variant, Aichholzer et al. [1] show that there exists
an alternating dual path between any two bicolored
faces. This result implies the existence of an alternat-
ing path of length Ω(n) in any bicolored arrangement
with n lines. This bound is tight up to a constant
factor for any arrangement with n− 1 red and 1 blue
line. They ask if it remains true in the case of more
balanced color classes. We extend the upper bound
to a more balanced scenario.

Theorem 2 There exists a simple arrangement of 3k
red and 2k blue lines where any alternating dual path
goes through at most 14k faces, for every odd k.

This negative result led us to the question if for any
line arrangement there exist a coloring allowing for a
‘long’ alternating path. Our answer is a bound for a
randomly colored arrangement.

Theorem 3 In a random bicoloring of an arrange-
ment of n lines, there exists an alternating path of
length Ω

(
n2/log n

)
with high probability.

2 Long Paths in Line Arrangements

Here we give a simplified proof of the theorem from [1],
namely that any line arrangement with n lines has a
path of length n2/4− O(n). Afterwards, we give the
general proof idea of Theorem 1. Pick an unbounded
face l0, and consider a wiring diagram of A such that

l1

l2

ln−1

...

r1

r2

rn−1

...

l0 = r0

ln = rn

Figure 1: A wiring diagram with walls displayed in
red; tunnels are between the walls.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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l0 is the bottom unbounded face. A wiring diagram
is a standard way to represent the combinatorics of a
line arrangement, see Figure 1 for an illustration; for
a formal definition we refer to [4] or [6, Section 5.1].

The set of faces with a shortest path of length i+ 1
to l0 is called face level Li. There are exactly two
unbounded faces in each level Li, 1 < i < n; we denote
the left one by li, and the right one by ri, see Figure 1.
For i ∈ {0, n}, Li consists of exactly one face; we also
refer to them as the top and bottom face, respectively.
We group pairs of adjacent face levels to tunnels, i.e.
tunnel Ti is the union of the two face levels L2i−1 and
L2i for 1 ≤ i ≤ bn/2c.

As the dual graph induced by the faces of a tunnel
is connected, we define an ordered set of tunnel paths
P := {Pi | i ∈ {1, . . . , bn/2c}}, with

Pi := a path in tunnel Ti

{
from l2i−1 to r2i i odd,

from r2i−1 to l2i i even.

We think of path Pi as oriented from the start to the
end vertex. The path family P has the property of
being glueable, that is the paths are pairwisely disjoint
and the end faces of Pi and the start face of Pi+1 are
adjacent. Hence, the paths in P can be ‘glued’ to one
path by concatenation: P := P1 P2 P3 P4 . . .

Lemma 4 Let Q be a path from li to rj in A.
If i, j ≤ n/2, then |Q| ≥ i+ j + 1.
If i, j ≥ n/2, then |Q| ≥ 2n− i− j + 1.

Proof. Consider a shortest path Q from li to rj . The
path Q must cross at least the i lines starting above
li and the j lines ending above rj . Crossing any of
these lines yields one new face. Hence, the path is at
least of length (i+ j+ 1). For i, j ≥ n/2, consider the
lines starting and ending below li and rj . �

Summing the length of the paths in P, we immedi-
ately obtain that P has length at least

bn/2c∑

i=1

|Pi| ≥ 2

bn/4c∑

i=1

4i ≥ 1

4
n2 − n.

This ends the proof of the theorem from [1].

Figure 2: The walls of the tunnels are drawn as
straight horizontal lines. Typical rerouting steps are
illustrated in orange and brown.

In the following, we give the ideas of how to
strengthen this result and obtain a tight constant,
i.e., of how to prove Theorem 1. The idea is to pro-
long the current path P by incorporating sufficiently
many faces which are not yet used by the path. We
call these unused faces bad. The set of bad faces has
strong structural properties. Most importantly, the
set of bad faces induces a set of paths. These paths
can be incorporated until only isolated bad faces re-
main, see the orange rerouting in Figure 2. This has to
be done carefully, due to two reasons: Firstly, some
unbounded faces cannot be incorporated. Secondly,
after one rerouting, the structure of our path changes
and a second rerouting may not be possible.

We use a charging scheme to count the bad faces af-
ter the first type of rerouting steps. After eliminating
adjacent unused faces, every ramaining unused bad
face obtains two units of charge. The charged faces
distribute the charge to traversed faces as depicted in
Figure 3. It is possible that some traversed faces ob-

Figure 3: Unused faces give two units of charge to
faces in the adjacent tunnel through their leftmost
wall-edge and leftmost wall-vertex.

tain two units of charge. In these cases, we reroute
again or redistribute the charge. A typical rerouting
step is illustrated in brown around the red highlighted
vertex in Figure 2.

In this way, we can show that the final path P ∗ has
a ratio of traversed and not traversed faces of 2 to 1;
implying the desired result.

3 Balanced Bicolored Upper Bound Example

We give a bicolored arrangement A with 3k red and
2k blue lines (for odd k) with a longest alternating
path of length 14k. An example for k = 3 is given in
Figure 4.

Take a regular 3k-gon (k odd) and construct the
red lines as tangents to its edges. As helping lines,
construct one line through each vertex and the cen-
ter of the polygon. Those lines form, up to projective
transformation, the Böröczky-example, which mini-
mizes the number of ordinary crossings [2, 7]. The
helping lines separate the plane into 3k double wedges.
For each third double wedge draw two blue lines that
leave the double wedge only inside the polygon, such
that all blue intersections lie within the polygon.

Observation 1 Consider two adjacent wedges that
do not contain a blue line. All faces contained in such
a pair of wedges are red, and thus the alternating path
cannot switch from one wedge to another.
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Figure 4: left: Construction for k = 3. Each third
wedge and the polygon is marked gray. Dotted lines
are the helping lines. right: A zoom into one wedge,
an alternating path is depicted.

Observation 2 Consider a wedge that contains blue
lines as shown in Figure 4. An alternating path from
the middle entering this wedge cannot return to the
middle.

We have to show that the length of a longest path P
in the arrangement is bounded by 14k. The number of
bicolored faces adjacent to the boundary of the regular
polygon is bounded by 8k: Each of the 2k blue lines
crosses the boundary twice and each crossing can be
made responsible for two bicolored faces. Consider
the faces F traversed by P that are not adjacent to
the regular polygon. The faces F lie in at most two
wedges by Observation 1 and 2 and are at most 2 ·3k.

The question if every balanced bicolored line ar-
rangement with k red and k blue lines has an alter-
nating dual path of length Ω(n2) remains open.

4 Random Coloring

We will show that a random bicoloring of an arrange-
ment admits a long alternating path, with high prob-
ability. Thus each arrangement has a coloring that
admits a long alternating path. The general idea
follows the uncolored case, but we use tunnels with
larger width and need to be more careful, that we can
indeed glue paths of each tunnel together.

Let A be an arrangement of n lines and consider
a random coloring of A, i.e., each line is colored red
with probability 1/2 and blue otherwise.

We define the tunnel of width w as

Ti =

(i+1)w⋃

j=iw+1

Lj .

For simplicity, we assume that w divides n. We denote
by l = n/w − 1 the index of the last tunnel. Further,

we define the depth of a face as the minimum number
of lines separating a face from an unbounded one. The
outer tunnel O is the set of faces of depth at most w.
We will suppress the width w in the notation, it will be
chosen later appropriately. The idea is similar to the
uncolored case: We find a path in each tunnel from
left to right or from right to left. The outer tunnel O
is needed to glue those paths together to one.

For technical reasons, we define the following orien-
tation of the dual graph of the arrangement as in [1].
As the dual graph is bipartite, we fix a coloring of the
faces with black and white, such that no two adja-
cent faces obtain the same color. We direct an edge
from white to black, if the separating line is blue and
we direct an edge from black to white if the sepa-
rating line is red. Any directed path in this directed
graph corresponds to an alternating path in the undi-
rected graph. Thus, in the remainder, we always con-
sider this directed graph. The set of faces that can be
reached from a face z in this directed graph is denoted
by reach(z).

Lemma 5 ([1]) Let E be the set of edges of the
arrangement that forms the boundary of reach(z).
Then, the connected components of E are monochro-
matic.

We choose a long path in the following way: There
exists directed paths L and R in O from some face in
T0 to Tl as in Figure 5.

Ti

O

b

t

L R

r1
r2

r9
r10

l1

l2

l9
l10

Figure 5: Construction of the path by the tunnel
paths.

The path L crosses the wall of T1, T2, . . . and so
on. We assume, for simplicity, that each wall will be
crossed by L exactly once. There are some faces F
traversed immediately before and immediately after
L crosses a wall. Denote these faces by l̃1, l̃2, . . . in
the order they are traversed by L. Similarly, we define
r̃1, r̃2, . . . for the path R. Note that each l̃i, r̃i is on
the top of a tunnel for i odd and on the bottom of a
tunnel for i even.
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As in the uncolored case, we define paths Pi, if they
exist, as follows

Pi := a path in tunnel Ti
{

from l̃2i to r̃2i+1 i even,

from r̃2i to l̃2i+1 i odd.

If there is more than one such path pick any. Our
long path is P = P1P2P3 . . . as depicted in Figure 5.

It remains to show that

(i) the paths L and R exist with high probability,

(ii) the paths Pi exists with high probability, and

(iii) the path P has length Ω(n2/ log n).

The proofs of (i) and (ii) are similar. We will show
(ii) and sketch (iii).

Lemma 6 We assume L and R exist as described
above. Fix some tunnel Ti and denote by l̃2i and l̃2i+1

the first and last face of L in Ti. Similarly let r̃2i and
r̃2i+1 be the bottom and top face of R. Let Ai be the
event that Pi does not exist. Then

Pr(Ai) < n4 2−w+3.

Proof. Assume i is even and there exists no path
from l0 to r1. Then consider the boundary of the
reachable region reach(l0). Since there exists a path
from l0 to l1, the boundary of reach(l0) connects the
top and bottom wall. Let u and v be the points where
the boundary touches the upper and lower wall fur-
thest to the right. By Lemma 5, the points u and v
on a connected part of the boundary of the reachable
region have the same color, see Figure 6.

u

v

f

Figure 6: The boundary of reach(f) within the tunnel
is marked green and is monochromatic.

As u and v are w levels apart, the set Su,v of lines
separating u from v contains at least w − 2 lines. All
those lines intersect the boundary between u and v
and thus all lines have the same color.

The probability that for two fixed points x, y the set
Sx,y is monochromatic is upper bounded by 2/(2w−2).

The complexity of a wall is bounded by O(n2), thus
there are at most Cn4 pairs of points on walls for some
constant C. So the probability that a path within the
wall is blocked is bounded by

Pr(Ai) ≤
∑

(x,y)

Pr(Sx,y is mono) ≤ Cn4

2w−3
.

�

We choose w = 6dlog ne+3. Using the union bound,
we can bound the probability that at least one of the
paths Pi does not exist from above by

Pr
(∨

Ai

)
≤
∑

Pr(Ai) ≤
n/w∑

i=1

Cn4

26 logn
= o(1).

It remains to give a lower bound on the length of
P . For this, we extend Pi by adding a shortest path
from the start vertex (and the end vertex) to a left
(and right) unbounded face within the tunnel Ti. The
length of the two extensions can be upper bounded by
2w each: at most w faces are needed to reach any un-
bounded face and another w to ensure an unbounded
face within tunnel Ti. By Lemma 4, each path Pi in
one of the middle tunnels, i.e., with l/3 ≤ i ≤ 2l/3,
contains a linear number of faces:

|Pi| ≥ 2i(w − 1)− 4w ≥ 2
n

3w

w

2
− 4w ≥ 1/3n− 4w

Moreover, the number of these paths is at least
l/3 = Ω(n/ log n). Consequently, P is of length
Ω(n2/ log n).

Remark: All results hold in the more general setting
of pseudoline arrangements.
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[5] Z. Füredi and I. Palásti. Arrangements of lines with
a large number of triangles. Proceedings of the Amer-
ican Mathematical Society, 92(4):561–566, 1984.

[6] J. E. Goodman and J. O’Rourke. Handbook of dis-
crete and computational geometry. CRC press, 2010.

[7] B. Green and T. Tao. On sets defining few or-
dinary lines. Discrete & Computational Geometry,
50(2):409–468, 2013.

[8] H. Tamaki and T. Tokuyama. A characterization
of planar graphs by pseudo-line arrangements. In
H.W. Leong, H. Imai, and S. Jain, editors, Algorithms
and Computation, volume 1350 of LNCS, pages 133–
142. Springer Berlin Heidelberg, 1997.

160



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

The Number of Combinatorially Different Convex Hulls of Points in Lines∗

Heuna Kim† Wolfgang Mulzer† Eunjin Oh‡

Abstract

Given a sequenceR of planar lines in general position,
we can obtain a point set by picking exactly one point
from each line in R. We provide exponential upper
and lower bounds on the number of combinatorially
different convex hulls for point sets that are generated
in this manner.

1 Introduction

Recently, geometric problems arising from data im-
precision have been studied intensively (e.g., [5]).
One popular model is as follows: given a sequence
R = 〈R1, . . . , Rn〉 of planar regions, we are promised
that our eventual input P contains exactly one point
from each Ri. The question is whether the knowledge
of R helps to speed up computations on P . There are
many algorithmic results for this setting [1, 2, 4, 6].
Here, we are interested in the combinatorial question
arising from this model: how much does the knowl-
edge of R restrict the combinatorial structure of P?
We consider the case that (1) R consists of planar
lines, and (2) we measure “variance” by the number
of combinatorially different convex hulls. It is known
that this setting can be exploited algorithmically [3],
and we provide exponential upper and lower bounds
on the number of possible convex hulls.

Problem Statement. Let P = 〈p1, . . . , pn〉 be a se-
quence of n points in the plane, and let conv(P )
be the convex hull of P . Let 〈pi1 , pi2 , . . . , pik〉 be
the vertices of conv(P ) in clockwise order, such that
i1 = min{i1, . . . , ik}. We define the hull signature of
P as σ(P ) = 〈i1, . . . , ik〉.

Consider a sequence R = 〈`1, . . . , `n〉 of n planar
lines in general position, i.e., every two lines in R
intersect in exactly one point and no three lines in
R have a common intersection. A sequence P =
〈p1, . . . , pn〉 of points in the plane is restricted to R if
pi ∈ `i, for i = 1, . . . , n. Given R, we would like to
study the set C(R) = {σ(P ) | P is restricted to R}
of all hull signatures that can be generated by point

∗This work was partially supported by research grant AL
253/8-1 from Deutsche Forschungsgemeinschaft (German Sci-
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Figure 1: (left) A lower bound example with seven
lines. The red lines illustrate the subdivision of the
plane into O(n2) slabs. (right) Between the second
and the third slab, `2 and `4 change position.

sequences restricted to R. We also define c(R) =
|C(R)| and c(n) = maxR c(R), where R ranges over
all sequences of n planar lines in general position. We
provide upper and lower bounds on c(n).

2 Lower Bound

Theorem 1 For any n ≥ 3, there exists a sequence
R of n lines in the plane with c(R) = Ω(n23n).

Proof. Let 〈`2, `3, . . . , `n−1〉 be a sequence of n − 2
planar lines in general position, and let Q = {`i ∩ `j |
2 ≤ i < j ≤ n − 1} be their intersection points. Set
m = |Q|. By general position, we have m =

(
n−2
2

)
.

We endow the plane with a Cartesian coordinate sys-
tem such that the points in Q have pairwise distinct
x-coordinates. We pick two additional lines `1 and `n
so that all points in Q lie below `1 and above `n along
the y-axis, and we set R = 〈`1, `2 . . . , `n−1, `n〉; see
Fig. 1. We will show that c(R) = Ω(n23n).

For this, we subdivide the plane into vertical slabs
as follows: let a1, . . . , am be the sorted sequence of x-
coordinates of the points in Q. For j = 1, . . . ,m− 1,
we define the jth vertical slab Vj = {(x, y) ∈ R2 |
aj < x < aj+1}. By general position, every vertical
slab intersects all lines inR, and by definition, no slab
contains an intersection point from Q. Furthermore,
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in every vertical slab the line `1 lies above all other
lines and the line `n lies below all other lines.

Now, we consider for each slab Vj the point se-
quences that are restricted to the line segments in
Vj . More precisely, define Rj = 〈`1j , . . . , `nj〉 as the
sequence of line segments `ij = `i∩Vj , for i = 1, . . . n.
We have C(Rk) ⊆ C(R). Next, we will provide a
lower bound on how many distinct hull signatures
C(Rj) contributes to C(R).

We begin with C(R1). Fix two arbitrary points
p1 ∈ `11 and pn ∈ `n1. The line segment p1pn
lies inside V1 and intersects all line segments `i1, for
i = 2, . . . n−1. By construction, p1 and pn always ap-
pear on conv(P ), no matter how we pick p2, . . . , pn−1
restricted to `21, . . . , `(n−1)1. For every other point
pi, we have three choices: we can pick pi ∈ `i1 such
that (i) the index i does not occur in the hull signa-
ture σ(P ) (i.e., pi is not on conv(P )); (ii) the index
i occurs in σ(P ) before n; or (iii) the index i occurs
in σ(P ) after n. The choice is not completely free: to
avoid degeneracies, conv(P ) must have at least three
vertices, so at least one other point needs to appear in
σ(P ). Thus, the number of distinct hull signatures for
point sequences restricted to R1 is at least 3n−2 − 1.

Now fix j ∈ {2, . . . ,m − 1} and consider C(Rj).
We give a lower bound on

∣∣∣C(Rj) \
⋃j−1
k=1 C(Rk)

∣∣∣,
the number of hull signatures generated by point se-
quences restricted to Rj that are not generated by
a point sequence restricted to a previous slab. By
construction, the left boundary of Vj contains exactly
one point q ∈ Q. Let q be the intersection of two lines
`a, `b ∈ R, such that `a is above `b to the left of q and
`a is below `b to the right of q. We pick two arbitrary
points p1 ∈ `1j and pn ∈ `nj . As before, p1 and pn
always appear on conv(P ), the line segment p1pn is
contained in Vj , and all other line segments `ij inter-
sect p1pn, for i = 2, . . . , n − 1. Next, we take points
pa ∈ `aj and pb ∈ `bj to the left of p1pn. As long as
pa and pb lie on conv(P ), the signature σ(P ) cannot

appear in
⋃j−1
k=1 C(Rk), since in all previous slabs we

have that if a and b both occur after n in σ(P ), then
b must come before a. In C(Rk), however, a comes
before b in this case, since `a and `b have switched.
For all other points pi, there are again three choices:
the index i may appear before or after n in σ(P ), or
it may be absent from σ(P ). Thus, the slab Vj con-

tributes at least 3n−4 new signatures to
⋃j
k=1 C(Rk).

There are Ω(n2) slabs, so c(R) = Ω(n23n). �

3 Upper Bound

Let R = 〈`1, . . . , `n〉 be a sequence of n planar lines in
general position. We denote byA(R) the arrangement
of R, i.e., the subdivision of the plane into cells, edges
and vertices induced by the lines in R: a cell is a
maximal connected component of R2\⋃`∈R `; an edge

Figure 2: (top) A set R of lines, a point set P re-
stricted to R, and conv(P ). (bottom) The outer zone
of conv(P ). There are 11 outer regions, and the com-
plexity of the outer zone is 39.

is a maximal component of a line in R that does not
belong to any other line in R; and a vertex is the
intersection of two lines in R.

Let P = 〈p1, . . . , pn〉 be a sequence of n points re-
stricted toR. We may assume that no point in P coin-
cides with a vertex of A(R) (otherwise we can perturb
P slightly). To distinguish them from edges of A(R),
we call the edges of conv(P ) arcs. Let 〈e1, . . . , ek〉
be the arcs of conv(P ), in clockwise order, where e1
comes after the leftmost point of conv(P ) in clock-
wise order. For an arc ei and a cell F of A(R), we
say that ei properly crosses F if the relative interior
of ei has nonempty intersection with F and that ei
touches F if ei ∩ F = v, where v = ei ∩ ei+1. The
arc ei crosses F if ei properly crosses F or touches F .
Let F = 〈F1, . . . , Fa〉 be the sequence of cells in A(R)
that are crossed by 〈e1, . . . , ek〉, in clockwise order:
first the cells crossed by e1, then the cells crossed by
e2, etc. The same cell may occur several times in F ,
but each occurrence is due to one crossing edge ei.

Since the vertices of conv(P ) lie on the edges of
A(R), each cell Fj ∈ F is divided into at most two
parts by the corresponding crossing edge ei. We de-
fine the outer region Zj as the component of Fj \ ei
whose interior does not intersect conv(P ). If Fj is
touched by ei, we call Zj a touched outer region and
Fj a touched cell. In this case, we have Zj = Fj . The
sequence Z = 〈Z1, . . . , Za〉 is called the outer zone of
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conv(P ) in A(R). Each outer region Z ∈ Z is a (pos-
sibly unbounded) convex polygon. For a non-touched
outer region Z, exactly one edge of Z belongs to the
boundary of conv(P ). We call it the supporting arc
of Z. All other edges of Z are (possibly unbounded)
parts of edges of A(R). For a touched outer region Z,
no edge is part of the boundary of conv(P ). Instead,
exactly one edge e of Z is intersected by conv(P ).
We split e into two subedges, each being a maximal
connected component of e \ conv(P ). The edges of Z
consist of the two subedges of e and the other edges
of A(R) incident to Z. We call e ∩ conv(P ) the sup-
porting vertex of Z. A vertex of a (touched or non-
touched) outer region Z is a vertex of A(R) incident
to Z. In particular, the supporting vertex or the end-
points of the supporting arc are not vertices of Z.

The complexity of an outer region Z is defined as
the number of edges of Zj other than the supporting
arc. The complexity of the outer zone Z is the sum
of the complexities of the outer regions, see Fig. 2.

Lemma 2 The outer zone complexity is at most 8n.

Proof. Let `i be a line in R. By construction,
conv(P ) intersects `i, so `i \ conv(P ) consists of ex-
actly two unbounded connected components, the two
rays corresponding to `i. We orient these rays to-
wards infinity, and we denote by R = 〈r1, . . . , r2n〉
the sequence of all rays that correspond to lines in R.

Consider an outer region Z. Every edge e of Z other
than the supporting arc is part of a single ray from R,
and we orient e in the same direction as the underlying
ray. Now every vertex of Z has either (i) two outgoing
incident edges (out-out vertex); (ii) two incoming in-
cident edges (in-in vertex); or (iii) one incoming and
one outgoing incident edge (in-out vertex).

Lemma 3 Let Z be an outer region. Then Z con-
tains no out-out vertex and at most one in-in vertex.
If Z has an in-in vertex, then Z is bounded.

Proof. Suppose that Z contains an out-out vertex
v, and let r1 and r2 be the two rays with v = r1 ∩
r2. Since Z lies in a cell of A(R), Z is completely
contained in the wedge W bounded by the subrays
of r1 and r2 beginning in v. However, conv(P ) is
incident to the start vertices of r1 and r2, so W does
not contain conv(P ). It follows that Z cannot be part
of the outer zone, a contradiction; see Fig. 3(top).

Next, suppose that Z contains two in-in vertices
v1 and v2. Suppose further that v1 comes before v2
in clockwise order along Z after the supporting arc.
All edges between v1 and v2 (in clockwise order) are
oriented, and both v1 and v2 are in-in, so there is at
least one out-out vertex between v1 and v2; see Fig. 3
(middle). We have just seen that this is impossible.

Finally, suppose that Z contains an in-in vertex v,
and let r1 and r2 be the two rays with v = r1 ∩ r2.

v

W
r1

r2

r1

r2

v

Z

Figure 3: (top) A wedge W bounded by an out-out-
vertex v does not contain conv(P ). (middle) There
cannot be two in-in vertices. (bottom) The outer re-
gion Z that contains an in-in vertex v is bounded.

r

W

r

v2

v1

r1

Figure 4: (top) The ray r is charged twice. (bottom)
There cannot be two in-out vertices whose outgoing
edges lie on the same side of a ray r.

Then Z is completely contained in the region that
is bounded by the subrays of r1 and r2 from their
respective starting points to v, and the boundary of
conv(P ) between those starting points. It follows that
Z is bounded; see Fig. 3(bottom). �

Lemma 4 There are at most 4n in-out vertices.

Proof. Let v be an in-out vertex and let r be the ray
that supports the incoming edge of v. We charge v
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to r, and we claim that every ray is charged at most
twice in this manner; see Fig. 4(top). Indeed, suppose
there is a ray r that supports incoming edges for three
in-out vertices. Then r contains two in-out vertices
v1 and v2 such that the outgoing edges for v1 and
v2 lie on the same side of r. Suppose that v1 comes
before v2 along r, and let r1 be the ray supporting the
outgoing edge from v1. Since the rays are directed
towards infinity, r and r1 bound an infinite wedge
W with apex v1. Furthermore, the interior of W is
disjoint from conv(P ) and thus does not contain any
outer region. This contradicts the assumption that
the outgoing edge from v2 extends into W ; see Fig. 4
(bottom). Since there are 2n rays, the bound on the
number of in-out vertices follows. �

Let Z be an outer region and let nZ be the number of
vertices on Z. If Z is bounded, the complexity of Z
is 1 + nZ . If Z is unbounded, the complexity of Z is
2 +nZ . Hence, the total complexity of the outer zone
Z = 〈Z1, . . . , Za〉 is a+ni-o+ni-i+no-o+au, where ni-o,
ni-i, and no-o denotes the number of in-out, in-in, and
out-out vertices, and au is the number of unbounded
outer regions. By Claim 3, ni-i + no-o + au ≤ a, and
by Claim 4, ni-o ≤ 4n. Thus, the complexity of Z is
at most 2a+ 4n ≤ 8n, since conv(P ) intersects every
line of R as most twice, so a ≤ 2n. �

Theorem 5 Let R = 〈`1, . . . , `n〉 be sequence of
n planar lines in general position. Then c(R) =
O(n2137n).

Proof. Let P be a sequence of points restricted to
R and let Z = {Z1, . . . , Za} be the outer zone of
conv(P ). To reconstruct the outer zone, it suffices to
know (i) the edge e of Z1 that follows Z1’s supporting
arc in clockwise order; and (ii) for j = 1, . . . , a, the
complexity zj of Zj . Indeed, using this information,
we can reconstruct the outer zone and obtain a set
C of candidate locations for the convex hull vertices
as follows: C is initialized as the empty set. Starting
from e, we walk for z1 − 1 steps in clockwise direc-
tion along the boundary of the corresponding cell in
A(R) (when taking a step on an unbounded edge of
the cell, we proceed to the other unbounded of of the
cell). Then we add the current edge e′ to C, if e′ /∈ C,
and cross to the neighboring cell of A(R). Next, we
continue for z2 − 1 steps in clockwise direction along
the boundary of the current cell. After that, we add
the current edge into C if the edge is not contained
in C, and change cells in A(R). We continue until we
reach the vertex on e again.

To reconstruct conv(P ) from the candidate set, we
need the information about the vertices of conv(P ).
Let C` = {e ∈ C | e ⊂ `}, for ` = R. Since each line
` ∈ R intersects the boundary of conv(P ) at most
twice, |C`| ≤ 2. Let e1 and e2 be elements of Ci. For
` ∈ R, an indicator b` ∈ {1, 2, 3} represents whether

(1) conv(P ) has a vertex in e1; (2) conv(P ) has a
vertex in e2; or (3) conv(P ) has no vertex in `.

Thus, for fixed a, the total number of combinatori-
ally different convex hulls can be estimated as

2eR · 3n · CZ ,

where eR denotes the number of edges of A(R), the
second term counts the number of indicator vectors
(b`), and CZ denotes the number of complexity vec-
tors 〈c1, . . . , ca〉. We have eR = O(n2). Further-
more, by Lemma 2, the number of complexity vectors
is bounded by the number of vectors (z1, . . . , za) with
zi ∈ {2, . . . , n} and

∑a
i=1 zi ≤ 8n, which is at most(

8n−a−1
a−1

)
. Thus, for fixed a, the number of combina-

torially different convex hulls is at most

O

(
n23n

(
8n− a
a

))
.

Since this expression grows exponentially with a for
a ∈ {1, . . . , 2n}, the total number of combinatorially
different convex hulls is asymptotically dominated by
the term for a = 2n, and it is at most

O

(
n23n

(
6n

2n

))
= O

(
n23n2

6n
3 log 3+ 2·6n

3 log 3
2

)

= O
(
n23n32n(3/2)4n

)
= O

(
n2137n

)
.
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Distinct distances between points and lines

Micha Sharir∗ Shakhar Smorodinsky† Claudiu Valculescu‡ Frank de Zeeuw‡

Abstract

We show that for m points and n lines in R2, the
number of distinct distances between the points and
the lines is Ω(m1/5n3/5), as long as m1/2 < n < m2.
We also show that for any m non-collinear points,
the number of distances between these points and the
lines spanned by them is Ω(m4/3).

1 Introduction

Let P be a set of m distinct points and L a set of n
distinct lines in the plane. We write I(P,L) for the
number of pairs (p, `) ∈ P × L such that p lies on
`. Denote by I(m,n) the maximum value of I(P,L)
over all sets with |P | = m, |L| = n. A classical re-
sult of Szemerédi and Trotter [11] is the tight bound
I(m,n) = Θ

(
m2/3n2/3 +m+ n

)
. Two other central

questions in combinatorial geometry were introduced
by Erdős [4]: repeated distances and distinct distances.
Given m points, the number of pairs of points at some
fixed distance is known to be O(m4/3) [9], but the best
known lower bound is only Ω(m1+ c

log log m ) [4]. The
minimum number of distinct distances determined
by m points has recently been shown by Guth and
Katz [5] to be Ω(m/ logm), which almost matches
the upper bound O(m/

√
logm).

In this paper we consider questions similar to those
above, but for distances between points and lines.

In fact, the point-line incidence question can be
viewed as a special instance of a repeated distance
problem between points and lines. Specifically, the
Szemerédi-Trotter result bounds the number of point-
line pairs such that the point is at distance 0 from
the line. It is an easy exercise to show that the same
bound holds for any fixed distance, by replacing each
line with the two lines at that distance from it.

Distinct point-line distances. Our first main result
concerns distinct distances between m points and n
lines in the plane. We write D(m,n) for the minimum

∗Tel Aviv University, Israel. Supported by BSF Grant
2012/229, by ISF Grant 892/13, by the I-CORE program (Cen-
ter No. 4/11), and by the Hermann Minkowski–MINERVA Cen-
ter for Geometry.
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number of point-line distances determined by a set of
m points and a set of n lines in R2.

Theorem 1 For m1/2 < n < m2 we have

D(m,n) = Ω
(
m1/5n3/5

)
.

In fact, our proof yields a stronger statement: For
any set P of m points, and any set L of n lines in the
plane, with m and n as above, there always exists a
point p ∈ P such that the number of distinct distances
from p to L satisfies the bound in Theorem 1.

This bound is still far from the upper bound
D(m,n) ≤ n/2, which follows from the following
construction: Take horizontal lines y = j for j =
1, . . . , n, and place all the points on the median line
y = n/2+1/2. In contrast with the repeated distances
question, the distinct distances variant seems harder
for point-line distances than for point-point distances,
and the lower bound that we are able to derive is in-
ferior to that of [5]. Nevertheless, we hope that our
work will trigger further research into this problem.

Spanned lines. Our second main result is a lower
bound on the number of distinct point-line distances
between points and their spanned lines (the lines pass-
ing through at least two of the points). We assume
that the points are not collinear, for otherwise there is
only one distance, namely 0. This question has a dif-
ferent flavor, because the number of lines spanned by
m non-collinear points varies from m to

(
m
2

)
. When

the points span many lines, Theorem 1 gives a good
bound, but when the points span few lines, we have to
use a different approach. We write H(m) for the min-
imum number of distances between m non-collinear
points in R2 and the lines spanned by these points.

Theorem 2 We have

H(m) = Ω
(
m4/3

)
.

The upper bound H(m) = O(m2), again far from
our lower bound, follows from a simple construction:
Place m− 1 points on a line, and one off the line.

A different way to view this problem is as a question
about distinct values of a function of triples of points,
i.e., a function of triangles. Specifically, for an ordered
triple (a, b, c) of points in R2, the distance from a to
the line spanned by b and c is a height of the triangle
abc. See [3, Section 6.2] for a discussion of several
related problems.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
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2 Distances between points and lines

In this section we prove Theorem 1. First, we intro-
duce a simplified version of the argument in Section
2.1, and then we give the full proof in Section 2.2.

2.1 A first bound

Let P be a set of m points and L a set of n lines. Let
t be the total number of distinct distances between
the m points and the n lines. Around each of the
m points, draw at most t circles whose radii are the
distances occurring from that point, and let C be the
set of these circles. We write T (L,C) for the number
of tangencies, i.e., pairs (l, c) ∈ L × C such that ` is
tangent to the circle c. Note that T (L,C) = mn since
every point-line pair gives rise to one tangency.

We now dualize. Concretely, we rotate the plane
so that none of the lines is vertical, and then we map
a line y = ax + b to the dual point (a, b). Under
this map, an algebraic curve is mapped to the set
of points that are dual to the non-vertical tangent
lines of the curve; these dual points form an algebraic
curve, called the dual curve. We refer to the original
xy-plane as the primal plane, and to the ab-plane as
the dual plane.

Applying this to our setting, the set L of n lines in
the primal plane is mapped to a set L∗ of n points in
the dual plane, and the set C of (at most) mt circles in
the primal plane is mapped to a set C∗ of mt algebraic
curves in the dual plane.

We observe that these curves have three degrees of
freedom, in the sense that any two curves intersect in
a bounded number of points, and for any three points,
the number of curves that contain all three points is
bounded. The first part follows from the fact that, in
the primal plane, any two circles have at most four
common tangent lines. The second part corresponds
to the fact that any three lines in the primal plane are
simultaneously tangent to at most four circles.

Given this property, we can apply the Pach-Sharir
incidence theorem [6] to get

I(L∗, C∗) = O(n3/5(mt)4/5 + n+mt).

On the other hand, we have I(L∗, C∗) = T (L,C) =
mn. Comparing these bounds gives either mn =
O(m4/5n3/5t4/5), so t = Ω(m1/4n1/2); or mn = O(n),
so m = O(1); or mn = O(mt), so t = Ω(n). Thus

D(m,n) = Ω
(
m1/4n1/2

)
,

unless m = O(1) or m = Ω(n2).
In fact, we could obtain a better bound using the

improved incidence bound due to Agarwal et al. [1],
although it requires some work to argue that the dual
curves satisfy the conditions in that paper. We omit
this analysis here, since the refined argument in the
next subsection gives an even better bound.

2.2 Proof of Theorem 1

We start, as in Section 2.1, by reducing the problem
to counting line-circle tangencies, and then dualize.
Instead of directly using an incidence bound for the
dual curves, we derive a better bound by taking a
closer look at the structure of the problem. Our ap-
proach is similar to that used by Székely [10] to prove
the bound Ω(m4/5) on the number of distinct point-
point distances.

Let P be a set of m distinct points and L a set of n
distinct lines in the plane. Again, let t be the number
of distinct distances, draw at most t circles around
every point, and denote the resulting set of circles by
C. As before we have T (L,C) = mn.

In the dual plane we have a set L∗ of n points. The
dual curve c∗ of a circle c is the locus of all points (a, b)
dual to lines that are tangent to c. If c is centered at a
point p = (p1, p2) and has radius r, then the equation
in a, b that defines c∗ is |p2−p1a− b|/

√
1 + a2 = r, or

(p2 − p1a− b)2 − r2(1 + a2) = 0.

This is the equation of a hyperbola. We treat each
branch of the hyperbola as a separate curve, and we
let C∗ be the set of these 2mt hyperbola branches.

To bound the number I(L∗, C∗) of incidences be-
tween L∗ and C∗, we draw a topological (multi-)graph
G in the dual plane with vertex set L∗. We assume
without loss of generality that each hyperbola branch
in C∗ contains at least two points of L∗. Indeed,
we can discard all curves of C∗ containing at most
one point of L∗, thereby discarding at most 2mt inci-
dences.

For every curve in C∗, we connect each pair of con-
secutive points of L∗ on that curve by an edge drawn
along the portion of the curve between the two points.
Write E for the set of edges obtained in this way. The
number of edges on each curve of C∗ is exactly one
less than the number of points on it, so overall the
number of edges in G satisfies

|E| ≥ I(L∗, C∗)− 2mt.

Note that an edge can have high multiplicity, when
many curves of C∗ pass through its two endpoints,
and the endpoints are consecutive on each of these
curves. This situation corresponds to the case in the
primal plane where we have many circles touching a
pair of lines, and the corresponding tangencies are
consecutive on each of the circles.

We define a parameter s, to be chosen later. Let E1

denote the set of edges with multiplicity at most s and
let E2 denote the set of edges with multiplicity larger
than s. In order to bound |E1| we use the crossing
lemma (see [10]), which states that a graph G with n
vertices, e edges, and maximum edge multiplicity s,
has Ω(e3/sn2) edge crossings in any drawing, unless
e < 4ns. We apply it to the graph with vertex set L∗
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and edge set E1. Since any two hyperbolas intersect
in at most four points, the total number of crossings
between curves in C∗ is at most 4 ·

(
mt
2

)
= O(m2t2).

Combining the two bounds on the number of cross-
ings, we get

|E1|3
sn2

= O(m2t2),

so, taking into account the case |E1| < 4ns,

|E1| = O(m2/3n2/3t2/3s1/3 + ns). (1)

Next, we consider the edges of E2. If an edge with
endpoints `∗1, `

∗
2 has multiplicity larger than x, then

the lines `1 and `2 in the primal plane have x com-
mon tangent circles. The centers of these circles lie
on the two angular bisectors defined by `1, `2. By the
pigeonhole principle, there must be x/2 incidences be-
tween the m points and one of the bisectors of `1, `2.

We charge each edge of E2 to the incidence between
the angular bisector and the center of the circle c dual
to the curve that the edge lies on. We claim that
each such incidence can be charged at most 2t times.
Indeed, in the primal plane, consider such an inci-
dence between a point p and and an angular bisector
`. There are at most t distinct circles with the same
center p, and each of these circles can have at most
two pairs of tangent lines such that the angular bisec-
tor of those lines is `, and such that the tangencies are
consecutive. (In this argument, we have accounted for
the possibility that ` might be the angular bisector of
many pairs of lines.)

It follows from the Szemerédi-Trotter theorem (see
Section 1) that the number of lines containing at least
s/2 of the m points is O(m2/s3 + m/s), as long as
s/2 > 1. Then applying the Szemerédi-Trotter theo-
rem to these m points and O(m2/s3+m/s) lines gives
that there are O(m2/s2+m) incidences between these
points and lines. Thus we have

|E2| = O

(
m2t

s2
+mt

)
. (2)

If m > n1/2, we can set s = m4/7t1/7/n2/7, since
then s/2 > t1/7/2 > 1 (recall the lower bound on t
from Section 2.1). Adding together (1) and (2) gives

|E| = O
(
m6/7n4/7t5/7 +m4/7n5/7t1/7 +mt

)
.

Thus the same bound holds for T (L,C). Combining
this with T (L,C) = mn, we get t = Ω(m1/5n3/5)
from the first term, t = Ω(m3n2) from the second
term, and t = Ω(n) from the third term. Thus

t = Ω
(
m1/5n3/5

)
,

if m < n2, and assuming that m > n1/2. This com-
pletes the proof of Theorem 1. �

Note that in the proof above we could let t be the
maximum number of distances from a point to a line.
Then we could conclude that there is a single point
such that the number of distances from this point sat-
isfies the bound. On the other hand, the proof in
Section 3 does not lead to such a conclusion.

3 Distances between points and spanned lines

We now consider the problem of bounding from be-
low the number of distinct distances between a non-
collinear point set P and the lines spanned by P .
Write `bc for the line spanned by points b and c, write

H(P ) = |{d(a, `bc) | a, b, c ∈ P}|

for the number of distances between points of P and
lines spanned by P , and write H(m) for the minimum
value of H(P ) over all point sets P of size m.

For point sets with not too many points on a line,
a good bound follows from Theorem 1. However, we
aim for a reasonably good bound that also holds when
many points are collinear. We reduce it to showing
that the rational function f(x, y) = (x− y)2/(1 + y2)
“expands”, in the sense that f(x, y) takes Ω(m4/3)
distinct values for x, y in any set of m real numbers. If
f were a polynomial, this would follow directly from
[7]. To extend the bound Ω(m4/3) to the rational
function f , we use the same approach as [7], which
originated in [8].

Proof of Theorem 2: By a theorem of Beck [2,
Theorem 3.1], there is a constant c such that either
the points of P span at least cm2 distinct lines, or at
least cm points of P are collinear.

In the first case, Theorem 1 gives the lower bound

H(P ) = Ω
(
m1/5(cm2)3/5

)
= Ω

(
m7/5

)
.

Consider the second case, when k = cm of the points
are collinear. Since not all the points are collinear, at
least one other point q ∈ P does not belong to this
line. By translating, rotating, and scaling, we can
assume that q = (0, 1) and that the other points are
on the x-axis, and by removing at most half the points
we can assume that they are all on the positive x-axis.
We denote them by pi = (xi, 0) for i = 1, . . . , k, with
all xi positive, and we set W = {x1, . . . , xk}.

The interesting distances are those from a point pi
to the line `pjq spanned by pj and q. We define

f(x, y) =
(x− y)2

1 + y2
,

so that f(xi, xj) equals the square of the distance
d(pi, `pjq). In order to obtain a lower bound for the
number of point-line distances, it suffices to find a
lower bound for the number of distinct values of f ,
i.e., the cardinality of f(W ) = {f(x, y) | x, y ∈W}.
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Following the setup in [8], we define

Q = {(x, y, x′, y′) ∈W 4 | f(x, y) = f(x′, y′)}.

Writing f−1(a) = {(x, y) ∈ W 2 | f(x, y) = a} and
using the Cauchy-Schwarz inequality, we obtain

|Q| =
∑

a∈f(W )

|f−1(a)|2 ≥ k4

|f(W )| .

We wish to establish an upper bound on |Q|.
We define algebraic curves Cij in R2 by

Cij = {(z, z′) ∈ R2 | f(z, xi) = f(z′, xj)}.

Then (xk, xl) ∈ Cij if and only if (xk, xi, xl, xj) ∈ Q.
Thus, denoting by Γ the set of curves Cij , and by S
the set of pairs (xk, xl), we have |Q| = |I(S, Γ )|. It
is not hard to show that the curves Cij with i = j
contribute at most O(k2) quadruples, which is a neg-
ligible number, so in the rest of the proof we assume
that i 6= j.

The equation f(z, xi) = f(z′, xj) is equivalent to

z′ − xj = ±Aij · (z − xi),

where we write Aij =
√

(1 + x2j )/(1 + x2i ). Every

curve Cij is thus the union of two lines in the zz′-
plane, given by

L+
ij : z′ = Aijz + (xj −Aijxi),

L−ij : z′ = −Aijz + (xj +Aijxi).

Therefore, we need only consider the two families
Γ+ = {L+

ij | i 6= j} and Γ− = {L−ij | i 6= j}. We

want to bound I(S, Γ+ ∪ Γ−), but we need to deal
with the possibility that some of these lines coincide.

Since I(S, Γ ) = I(S, Γ+) + I(S, Γ−), it suffices to
consider only coincidences of lines in Γ+, and coinci-
dences of lines in Γ−. Without loss of generality, we
focus on the former type.

Suppose that

L+
ij : z′ = Aijz + (xj −Aijxi),

L+
kl : z′ = Aklz + (xl −Aklxk)

define the same line, for some (xi, xj) 6= (xk, xl). Con-
sidering (xi, xj) fixed, (xk, xl) would have to satisfy

√
1 + x2l
1 + x2k

= Aij and xl − xk

√
1 + x2l
1 + x2k

= Bij ,

where we write Bij = xj − xiAij . The first equation
can be rearranged to x2l − A2

ijx
2
k = A2

ij − 1, which
defines a nondegenerate hyperbola in the xkxl-plane
(we have A2

ij 6= 1 because i 6= j). The second equation
can be rearranged to the equation

2Bijx
2
kxl = (B2

ij − 1)x2k + x2l − 2Bijxl +B2
ij ,

which defines a cubic curve. It is not hard to show
that this hyperbola and cubic do not have a com-
mon factor, for instance by showing that both are
irreducible. Bézout’s theorem then implies that they
have at most six common points. In other words, a
line in Γ+ or Γ− occurs with multiplicity at most six.

We thus have an incidence problem for points and
lines, with k2 points and O(k2) distinct lines, each
with multiplicity at most six. The Szemerédi-Trotter
theorem (see Section 1) gives

|I(S, Γ+ ∪ Γ−)| = O((k2)2/3(k2)2/3 + k2 + k2)

= O(k8/3).

Taking into account the discarded quadruples, we
have |Q| = |I(S, Γ+ ∪ Γ−)|+O(k2) = O(k8/3), so

|f(W )| ≥ k4

|Q| = Ω(k4/3) = Ω(m4/3),

completing the proof of Theorem 2. �
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Ramsey numbers for empty convex polygons

Crevel Bautista-Santiago Javier Cano∗ Ruy Fabila-Monroy† Carlos Hidalgo Toscano‡

Clemens Huemer§ Jesús Leaños¶ Toshinori Sakai‖ Jorge Urrutia∗∗

Abstract

We study a geometric Ramsey type problem where
the vertices of the complete graph Kn are placed on a
set S of n points in general position in the plane, and
edges are drawn as straight-line segments. We define
the empty convex polygon Ramsey number REC(k, k)
as the smallest number n such that for every set S
of n points and for every two-coloring of the edges
of Kn drawn on S, at least one color class contains
an empty convex k-gon. A polygon is empty if it
contains no points from S in its interior. We prove
17 ≤ REC(3, 3) ≤ 463 and 57 ≤ REC(4, 4). Further,
there are three-colorings of the edges of Kn (drawn
on a set S) without empty monochromatic triangles.
A related Ramsey number for islands in point sets is
also studied.

1 Introduction

Ramsey’s theorem ensures that for every two-coloring
of the edges of the complete graph Kn on a large
enough number n of vertices, at least one of the two
color classes contains a clique of a given size. The
Ramsey number R(s, t) is the smallest number n such
that every two-coloring of the edges of Kn contains
a clique on s vertices from the first color class or a
clique on t vertices from the other color class. Geo-
metric variants of Ramsey’s theorem have been stud-
ied, see e.g. [9]. When the vertices of Kn are drawn on
a set of n points in the plane, and edges as straight-
line segments, geometry comes into play by consid-
ering crossings of edges. Throughout, we only con-
sider point sets S in general position, meaning sets
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without three collinear points. For example, in [11]
it was shown that for every set S of n points and
for every two-coloring of the edges of Kn drawn on
S, one color class has non-crossing cycles of lengths

3, 4, . . . ,
⌊√

n/2
⌋
. In this work we consider another

geometric constraint, namely emptyness. A simple
polygon is empty if it has no points of S in its inte-
rior. The number of empty convex polygons in Kn

drawn on sets S of n points have been estimated, see
e.g. [1, 2, 7, 10]. We define the empty convex poly-
gon Ramsey number REC(s, t) as the smallest num-
ber n such that for every set S of n points and for
every two-coloring of the edges of Kn drawn on S,
the first color class contains an empty convex s-gon
or the second color class contains an empty convex
t-gon. For the case of empty triangles, the bounds
17 ≤ REC(3, 3) ≤ 463 are shown. We also prove that
there are three-colorings of the edges of Kn, drawn on
some point set S, without empty monochromatic tri-
angles; in other words REC(3, 3, 3) = 0. For the case
of empty convex quadrilaterals we can show the lower
bound REC(4, 4) ≥ 57. We were not able to prove an
upper bound. Finally we consider a Ramsey number
for islands in point sets. An island of a point set S
is a subset I of S such that Conv(I) ∩ S = I. Islands
in point sets were also studied in [3, 4, 6]. In our
context, an island is a clique formed by a subset of
vertices of Kn drawn on S which contains no further
point of S in its interior. We remark that the Ram-
sey number R(s, t) equals the smallest number n such
that every two-coloring of the edges of Kn drawn on
a set of n points in convex position contains an island
on s points in one color class or an island on t points
in the other color class. This is, because there, all
islands are in convex position. In [13] it was shown
that for every set S of n points, the edges of Kn,
drawn on S, can be two-colored such that there is no
monochromatic island on four points with triangular
convex hull. We prove that there are point sets S and
a two-coloring of the edges of Kn, drawn on S, such
that there is no monochromatic island on four points
(regardless of the form of the convex hull). That is,
the island Ramsey number for four points RI(4, 4) is
zero.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The empty triangle Ramsey number

Theorem 1 The empty triangle Ramsey number
satisfies 17 ≤ REC(3, 3) ≤ 463.

Proof. For the upper bound, we use the fact that
every sufficiently large point set in general position
contains an empty convex hexagon [8, 14]. Koshelev
obtained the current best bound, 463, on the number
of points needed to guarantee such an empty convex
hexagon [12]. Consider only the complete graph on
six vertices K6 formed by the vertices of this hexagon.
Ramsey’s theorem tells us that every two-coloring of
K6 contains a monochromatic triangle. Since the
hexagon is empty, the monochromatic triangle is so
as well. For the lower bound, a two-colored com-
plete geometric graph on 16 vertices without an empty
monochromatic triangle is shown in Figure 1.

Figure 1: A two-coloring of the edges of K16 without
an empty monochromatic triangle. Only the edges of
one color class are drawn.

�

Theorem 2 The empty triangle Ramsey number for
three-colored complete graphs REC(3, 3, 3) is zero.

Proof. We have to present a three-coloring of the
edges of the complete geometric graph Kn drawn on
a set S of n points. The point set S is the so-
called Horton set H(n), see e.g. [1, 2, 5, 10], de-
fined recursively as follows: H(1) = {(1, 1)} and
H(2) = {(1, 1), (2, 2)}. When H(n) is defined, set

H(2n) = {(2x− 1, y) | (x, y) ∈ H(n)}

∪ {(2x, y + 3n) | (x, y) ∈ H(n)}.
In this construction H(2n) is obtained by taking H(n)
and a copy of H(n) which is slightly shifted to the
right and placed far above the other set H(n). To
define an edge-coloring of the complete graph drawn
on H(n) we use an auxiliary three-coloring of the ver-
tices of H(n): vertex (x, y) gets color x mod 3. This
three-coloring for H(8) is shown in Figure 2. In [5],

1

2

0

1

2

0

1

2

Figure 2: A three-coloring of the vertices of the Hor-
ton set H(8).

Theorem 3.3, it was proved that this coloring admits
no empty triangles with its three vertices from the
same color class. The three-coloring for the edges
of Kn is now defined as follows: an edge connecting
points (x1, y1) and (x2, y2) gets color x1 + x2 mod 3.
Then, a triangle formed by points (x1, y1), (x2, y2)
and (x3, y3) is monochromatic if and only if x1, x2
and x3 belong to the same congruence class modulo
three. Thus, the vertices of a monochromatic triangle
have the same color and from [5] we know that these
triangles are not empty. �

3 The empty convex quadrilateral Ramsey num-
ber

Theorem 3 The empty convex quadrilateral Ram-
sey number satisfies 57 ≤ REC(4, 4).

Proof. Figure 3 shows a two-coloring of the edges
of K11 in convex position without an empty convex
monochromatic quadrilateral. A drawing of K56 (in-
dicated in Figure 4) and a two-coloring of its edges
without an empty convex monochromatic quadrilat-
eral is obtained by placing five groups of 11 points
(with two-coloring as in Figure 3) in such a way that
the 55 points lie on five small semi-circles with centers
the vertices of a regular pentagon. Then the last point
is placed in the center of this pentagon and connected
to the 55 points with the same color as the drawn
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Figure 3: A two-coloring of the edges of K11 without
an empty convex monochromatic quadrilateral. Only
the edges of one color class are drawn.

Figure 4: Schematic drawing of K56 without an empty
convex monochromatic quadrilateral. Only the edges
of one color class are indicated.

edges in Figure 3.

�

4 The Ramsey number for islands

Theorem 4 The island Ramsey number RI(4, 4) is
zero.

Proof. We present a two-coloring of the edges of Kn

drawn on the Horton set H(n) without an empty
monochromatic K4. As in the proof of Theorem 2, we
start with the auxiliary three-coloring of the vertices
of H(n) where vertex (x, y) gets color x mod 3. Now
we define a two-coloring for the edges of Kn as fol-
lows: an edge connecting points (x1, y1) and (x2, y2)
gets color 0 if x1 − x2 mod 3 = 0 and gets color 1
otherwise. In other words, an edge gets color 0 if and
only if its two vertices have the same color in the aux-
iliary vertex coloring. Then, a complete subgraph K4

is monochromatic if and only if its four vertices have
the same color in the auxiliary vertex coloring. Thus,
if a K4 is monochromatic, then from [5] Theorem 3.3,
we know that none of its triangles is empty, which
implies that this K4 is not an island.

�

5 Concluding Remarks

An obvious problem left open is to close the gap be-
tween lower and upper bound for REC(3, 3). Very
interesting would be to prove an upper bound on the
empty convex quadrilateral Ramsey number. Com-
puter experiments suggest that it is finite and proba-
bly not too large.
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[2] I. Bárány, P. Valtr. Planar point sets with a small
number of empty convex polygons. Stud. Sci. Math.
Hung., 41 (2004), 243–269.

[3] C. Bautista-Santiago, J. Cano, R. Fabila Monroy,
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[13] J. Nešetřil, J. Solymosi, P. Valtr. Induced monochro-
matic subconfigurations. In: Contemporary Trends in
Discrete Mathematics, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 49,
AMS, (1999), 219–227.

[14] C.M. Nicolás. The empty hexagon theorem. Discrete
and Computational Geometry, 38 (2007), 389–397.

171



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Efficient Spanner Construction for Directed Transmission Graphs∗
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Abstract

Let P ⊂ R2 be a set of n points, each with an asso-
ciated radius rp > 0. The transmission graph G for
P has vertex set P and a directed edge from p to q if
and only if q lies in the ball with radius rp around p.
Let t > 1. A t-spanner H for G is a sparse subgraph
such that for any two vertices p and q connected by a
path of length l in G, there is a path of length at most
t · l from p to q in H. Given G implicitly as points
with radii, we show how to compute a t-spanner for
G in time O(n(log n+ log Ψ)), where Ψ is the ratio of
the largest and smallest radius in P .

1 Introduction

A common model for wireless sensor networks is the
unit-disk graph: each sensor is modeled by a unit disk,
and there is an edge between two sensors iff their disks
intersect. Intersection graphs of disks with arbitrary
radii have been used to model different transmission
radii. These graphs are undirected, while for some
networks a directed model would be more appropri-
ate. This motivated Peleg and Roditty [5] to define
transmission graphs. The vertex set of a transmission
graph G is a point set P ⊂ R2, where each p ∈ P has
a radius rp > 0. There is a directed edge −→pq from p
to q iff q lies in the disk D(p) of radius rp around p.

Although transmission graphs are represented suc-
cinctly, they may have Θ(n2) edges. Thus we would
like to approximate them by sparse spanners. For
t > 1, a subgraph H ⊆ G is a t-spanner for G if the
distance between any two vertices p and q in H is at
most t times the distance between p and q in G (cf,
e.g., [4]). Fürer and Kasivisawnathan showed how to
compute spanners for unit and general disk graphs by
adapting the Yao graph [3, 6]. Peleg and Roditty [5]
gave a spanner-construction for transmission graphs
in any metric of bounded doubling dimension. Ex-
cept for the unit-disk case, the running times depend
on the number of edges. We avoid this dependency
and give an efficient algorithm to construct t-spanners
for transmission graphs for the planar Euclidean case.
Preliminaries and Results. Let P ⊂ R2 be a point
set with radii, and letG be its transmission graph. Let

∗Supported by GIF project 1161&DFG project MU/3501-1.
†Tel Aviv University, Israel. haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany

{mulzer,pseiferth}@inf.fu-berlin.de
§Bar Ilan University, Israel. liamr@macs.biu.ac.il

Φ = maxp,q∈P |pq|/minp 6=q∈P |pq| be the spread of P .
In §2, we give a construction depending on Φ:

Theorem 1 Let G be the transmission graph for an
n-point set P ⊂ R2 with spread Φ. For any t > 1, we
can find a t-spanner for G in time O(n(log n+log Φ)).

The radius ratio Ψ = maxp,q∈P rp/rq of P is the ratio
of the largest and the smallest radius in P . In §3 we
extend our construction to depend on Ψ instead of Φ.

Theorem 2 Let G be the transmission graph for an
n-point set P ⊂ R2 with radius ratio Ψ. For t > 1, we
can find a t-spanner for G in time O(n(log n+log Ψ)).

We may assume that Ψ ≤ Φ: a radius less than the
smallest distance c in P can be set to c/2, and a radius
larger than the diameter d of P can be set to d.

Our construction uses planar grids. For i =
0, 1, . . . , the grid at level i, Qi, consists of axis-parallel
squares of diameter 2i that partition the plane in grid-
like fashion (the cells). Qi is aligned so that the origin
is a grid vertex. The distance between two cells is the
smallest distance of any two points contained in them.
We assume that our computational model can find the
grid cell containing a given point in O(1) time.

2 Efficient Spanner Construction

Let P ⊂ R2 be a point set with radii, and let Φ be
the spread of P . Let G be the transmission graph
of P . Our spanner construction is a modification of
the Yao graph [6] that takes the disks into account.
Ideally, our spanner H should look as follows: we pick
a suitable k ∈ N, and we let C be a set of k cones
with opening angle 2π/k and the origin as apex that
partition the plane. For q ∈ P and C ∈ C, let Cq be
the translated copy of C with apex q. We pick the
closest vertex p ∈ P in Cq with q ∈ D(p), and we add
the edge −→pq to H. This gives O(kn) edges, and one
can show that H is a t-spanner for t = 1 + Θ(1/k).
This is folklore in the spanners community [2, 5].

Since we do not know how to find these edges
quickly, we present an approximate construction with
similar properties. We partition each cone Cq into
“intervals” obtained by intersecting Cq with annuli
centered at q whose inner and outer radii grow ex-
ponentially; see Fig. 1. Then we cover each inter-
val with O(1) grid cells whose diameter is “small”
compared to the distance between the interval and q.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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This gives two properties that help us find an approx-
imately shortest incoming edge for q in Cq: once we
have an incoming edge, we need not consider larger in-
tervals, and if there are multiple edges from the same
cell, it suffices to pick one of them. Below, we define a

qp
r

s

Figure 1: A cone Cq covered by discretized intervals.
We only need one of the edges, −→pq or −→rq, for H.

decomposition of P that represents the discretized in-
tervals by a neighborhood relation between grid cells.

We first give the properties of this decomposition
and use it to find the edges for H. Then we prove
that H is a t-spanner for an appropriate choice of
parameters. Finally, we show how to use a quadtree
to find this decomposition and how to implement the
main steps in the desired running time.

Let c > 2 be a large constant. For a grid cell σ, let
mσ be the point in P ∩ σ with the largest radius.

Definition 1 Let G be a transmission graph with
vertex set P ⊂ R2. A c-separated annulus decomposi-
tion for G consists of a finite set Q ⊂ ⋃∞i=0Qi of grid
cells, a symmetric neighborhood relation N ⊆ Q×Q,
and assigned sets Rσ for each σ ∈ Q so that (i) for
all (σ, σ′) ∈ N , diam(σ) = diam(σ′) and d(σ, σ′) ∈
[(c − 2) diam(σ), 2cdiam(σ)); and (ii) for every edge−→pq of G, there is (σ, σ′) ∈ N with p ∈ σ, q ∈ σ′, and
with either p ∈ Rσ or q ∈ D(mσ).

For σ ∈ Q, we define N(σ) = {σ′ | (σ, σ′) ∈ N}.
Property (i) in Def. 1 implies |N(σ)| = O(1).
Getting a Spanner. Let t > 1 be the desired stretch
factor. Depending on t, we choose constants c (separa-
tion) and k (number of cones) in a way to be described
later. Let Q be a c-separated annulus decomposition
for G. To get a t-spanner H ⊆ G, we go through all
cones C ∈ C and pick all incoming edges for C as in
Alg. 1. Instead of searching incoming edges for each
point q ∈ P separately, we group points using the cells
of Q. This gives the speed-up required for the desired
running time, as shown later. We consider the cells
σ ∈ Q by increasing diameter, and we search incom-
ing edges for points in σ ∩ P without incoming edges
so far. These are the active points. Initially all points
are active. Fix a pair (σ, σ′) ∈ N and let Q and R as
in Alg. 1. We find for each point in Q one incoming
edge whose other endpoint is in R, if such an edge ex-
ists (edge selection). Having Q sorted (line 5) allows
us to find these edges efficiently (see Lemma 8).

1 Set all points in P to active
2 foreach σ ∈ Q by increasing diameter do
3 foreach σ′ ∈ N(σ) do
4 Q← all active q ∈ σ ∩ P with Cq ∩ σ′ 6= ∅
5 Sort Q in x/y-direction // preproccess

6 R← Rσ′ ∪ {mσ′}
7 // edge selection

8 For all q ∈ Q find r ∈ R with q ∈ D(r), if
it exists, and add −→rq to H

9 Make all q ∈ Q with incoming edges inactive
Algorithm 1: Finding edges for P in a cone C ∈ C.

For each C ∈ C and q ∈ P , at most one cell σ ∈ Q with
q ∈ σ gives incoming edges for q: q becomes inactive
after processing σ. Since |C| = k and |N(σ)| = O(1),
q has O(k) incoming edges, and H has O(n) edges.
Next, we show that H is a t-spanner. For this, we
need three technical lemmas: Lemma 3 deals with the
imprecision due to the grid. Let −→pq be an edge of G
contained in the cone Cq. We prove that if we slightly
increase the opening angle of Cq, Alg. 1 picks at least
one edge −→rq contained in the larger cone. Lemmas 4
and 5 let us bound the distance between the endpoints
r and p. Lemma 5 is due to Bose et al [1]. For space
reasons, we omit the proofs of Lemmas 3 and 4.

Lemma 3 Let k ≥ 8 and c > 3 + 2/(sinπ/k). Given
i ∈ N0 and cells σ, σ′ ∈ Qi with d(σ, σ′) ≥ (c − 2)2i,
let Cq be a cone with opening angle 2π/k and apex
q ∈ σ that intersects σ′. Then the cone obtained from
Cq by doubling its opening angle contains σ′.

Lemma 4 Let Cq be a cone with apex q and opening
angle 4π/k. Suppose there are two points p and r in
Cq with (c + 1)2i ≥ |rq| ≥ |pq| ≥ (c − 2)2i. Then
|pr| ≤ ((4π/k)(c+ 1) + 3)2i.

Lemma 5 Let k ≥ 14 and let

t = (1 +
√

2− 2 cos(4π/k))/(2 cos(4π/k)− 1).

For any distinct points p, q, r ∈ R2 with |rq| ≤ |pq|
and α = ∠pqr ∈ [0, 4π/k], we have |pr| ≤ |pq|−|rq|/t.

We are now ready to prove that H is a t-spanner. This
is done in a similar manner as for Yao graphs.

Lemma 6 For any t > 1, there are constants c and
k such that H is a t-spanner for G.

Proof. We show by induction on the rank of the
length of the edges in G that for each edge −→pq in G
there is a p-q-path of length at most t|pq| in H.

Consider the shortest edge −→pq of G. Let Cq be the
cone at q that contains p. There is at least one pair in
N that fulfills Def. 1(ii) for −→pq. Among those, we pick
the pair (σ, σ′) ∈ N with minimum diameter. Sup-
pose that q ∈ σ, p ∈ σ′, and diam(σ) = diam(σ′) = 2i.
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Since −→pq is the shortest edge, σ′ contains only p (tak-
ing c > 3) and mσ′ = p, so R = {p}. Furthermore,
since p ∈ σ′, we have Cq ∩ σ′ 6= ∅. Thus, if q is ac-
tive in σ, then q ∈ Q, and we pick the edge −→pq for H
(Alg. 1, line 8). Suppose not. Then we have picked
an incoming edge −→rq for a smaller pair (σ̄, σ̄′) ∈ N
with diam(σ̄) ≤ 2i−1. By Def. 1(i), |rq| ≤ (c + 1)2i.
Also by Def. 1(i) we have |pq| ≥ (c − 2)2i and since
|rq| ≥ |pq|, we have (c+1)2i ≥ |rq| ≥ |pq| ≥ (c−2)2i.
By Lemma 3, σ̄′ (and thus r) is contained in the
cone C2

q obtained from Cq by doubling its angle to
4π/k. Using Lemma 4 with C2

q , we see that |pr| ≤
((4π/k)(c + 1) + 3)2i. Since for c, k ≥ 14 we have
(4π/k)(c + 1) + 3 < c − 2, this would mean that
|pr| < |pq| ≤ rp. Thus, −→pr would be an edge of G
that is strictly shorter than −→pq, despite our choice of−→pq. Hence, when processing σ, we will discover −→pq.

For the inductive step, consider an edge −→pq and the
cone Cq containing p. Again, let (σ, σ′) ∈ N be the
smallest pair of cells with q ∈ σ and p ∈ σ′ that ful-
fill Def. 1(ii) and suppose diam(σ) = 2i. We have
Cq ∩ σ′ 6= ∅, and we distinguish two cases.
Case 1: q is active. Then q ∈ Q and Def. 1(i) guar-
antees that Alg. 1 obtains an incoming edge −→rq for q
with r ∈ σ′. If r = p, we are done, so suppose r 6= p.
Since |pr| ≤ 2i, by induction there is a path from p
to r in H of length at most t2i. Using the triangle
inequality, we estimate the distance d(p, q) in H by

d(p, q) ≤ t2i + |rq| ≤ t2i + |pq|+ 2i = |pq|+ (1 + t)2i.

For c large enough the bound |pq| > (c− 2)2i gives

|pq|+ (1 + t)2i ≤ (1 + (1 + t)/(c− 2))|pq| ≤ t|pq|.

Case 2: q is inactive. There is an edge −→rq that was
selected due to a pair (σ̄, σ̄′) ∈ N with q ∈ σ̄, r ∈
σ̄′ and diam(σ̄) ≤ 2i−1. By Lemma 3, p and r are
contained in the cone C2

q with opening angle 4π/k.
We distinguish two subcases.

First, suppose that |rq| ≥ |pq|. Then, since (c +
1)2i ≥ |rq| ≥ |pq| ≥ (c − 2)2i, Lemma 4 implies that
r ∈ D(p), so −→pr is an edge of G of length at most
((4π/k)(c+ 1) + 3)2i. Thus, we can bound d(p, q) by

t|pr|+ |rq| ≤ t (4π(c+ 1)/k + 3) 2i + (c+ 1)2i

= (t (4π(c+ 1)/k + 3) + c+ 1) |pq|/(c− 2) ≤ |pq|t,

for c, k = Θ(t/(t − 1)). Here we used the fact that
|rq| ≤ (c+ 1)2i and that 2i ≤ |pq|/(c− 2).

Second, suppose |rq| < |pq|. By Lemma 5, we get
|pr| ≤ |pq| − |rq|/t. Thus, −→pr is an edge of G, and

d(p, q) ≤ t|pr|+ |rq| ≤ t(|pq| − |rq|/t) + |rq| = t|pq|,

where the first inequality is by induction. �

Finding the Decomposition. We show how to find
the decomposition for G as in Def. 1. Let c > 3 and

scale P so that the closest pair in P has distance c. A
quadtree for P is a rooted tree T where each internal
node has degree four. Each node v of T has an asso-
ciated cell σv from a grid Qi, i ≥ 0, and we say that v
has level i. If v is internal, the cells of its four children
partition σv into four congruent squares with half the
diameter of σv. We compute a quadtree T for P and
use it to find a c-separated annulus decomposition.

We construct T level-wise. To begin, we take the
smallest integer L such that there is a cell σ ∈ QL
that contains P . Since c is constant and since P has
spread Φ, the scaled point set has diameter cΦ, and
L = O(log Φ) (possibly after shifting P ). We create
the root v and set σv = σ. This gives level L. To
construct level i− 1 from level i, we do the following
for each level-i-node v whose cell σv is non-empty: we
take the four cells of Qi−1 that partition σv and create
four children w1, . . . , w4 of v. To each of w1, . . . , w4

we assign one of the four cells. We stop at level 0.
The scaling of P ensures that a cell of level 0 contains
at most one point and has diameter 1.

We now set Q = {σv | v ∈ T}. We let (σv, σw) ∈ N
if v and w have the same level and d(σv, σw) ∈ [(c −
2) diam(σv), 2cdiam(σv)). As Rσv , we take all p ∈
σv ∩P with rp ∈ [(c− 2) diam(σv), 2(c+ 1) diam(σv)].

Lemma 7 The set Q with N and Rσ as above is a
c-separated annulus decomposition with |Q| = O(n).

Proof. Since T has O(n) nodes, we have |Q| = O(n).
Property (i) of Def. 1 follows by construction. For
Property (ii), let −→pq be an edge of G and let i ∈ N0

such that |pq| ∈ [c2i, c2i+1). Let σ, σ′ ∈ Qi with p ∈ σ
and q ∈ σ′. By construction, these cells are assigned
to nodes of T and thus σ, σ′ ∈ Q. Since diam(σ) =
diam(σ′) = 2i, we have (c − 2)2i ≤ d(σ, σ′) ≤ |pq| <
c2i+1, so (σ, σ′) ∈ N . Since −→pq is an edge of G, we
have rp ≥ |pq| ≥ c2i. If rp ≤ (c + 1)2i+1, then p ∈
Rσ. Otherwise, rmσ ≥ rp > (c + 1)2i+1, and D(mσ)
contains σ′ and also q. �

Running Time. Considering the cells of Q in
increasing order in Alg. 1 constitutes a level-order
traversal of T starting from level 0. Fix a cell σv of
a node v of T . We can sort σv ∩ P in the preprocess
step (line 5) by merging the sorted lists of v’s children.
This takes O(n) time per level and O(n log Φ) time in
total. Now we bound the time for edge selection.

Lemma 8 Let Q,R as in Alg.1, line 8 with |Q| = n
and |R| = m. For each q ∈ Q we can find an r ∈ R
with q ∈ D(r), if such r exists, in time O(m logm+n).

Proof. Q and R are separated by one the supporting
lines ` of the cell σ that contains Q. Since σ is axis-
aligned, Q is sorted along ` in the preprocess step.
Consider a coordinate system with x-axis `. The lower
envelope E of the disks of R and ` has O(m) arcs, can
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be computed in O(m logm) time and is monotone in
` direction: since ` separates R and Q, each arc and `
can be seen as a function of x, and E is the pointwise
minimum of these functions (cf. Fig. 2). Let S be
the points on E where the arcs change. We merge Q
and S in time O(m+ n), and we sweep over Q∪ S in
x-direction to compute the point-disk incidences for
Q and R. We initialize D as the disk of the first arc
and q as the first point of Q. Whenever we reach a
point p ∈ S ∪ Q, we update D or q, depending on
whether p ∈ S or p ∈ Q. In the former case, we set
D to the disk of the new arc. In the latter case, we
first set q = p, and then we check if q ∈ D. If so,
we assign D to q. This sweep takes O(m + n) time.
Since the lower envelope is monotone, it is enough to
check for each q ∈ Q only the arc intersected by the
line through q orthogonal to `. �

`

Figure 2: The lower envelope and S (orange), the
points Q (red), and R (blue).

The next lemma states the running time of Alg. 1.
Due to space reasons, we omit the proof. The main
idea is that the running time is dominated by the edge
selection step. By the choice of Rσ, each point in P
participates in O(1) edge selections as a disk center,
at a cost of O(log n) per disk center (by Lemma 8),
and in O(log Φ) edge selections as a point in Q, at
O(1) cost per point (by Lemma 8). Thm. 1 follows by
Lemmas 6 and 9.

Lemma 9 The construction of the spanner H of G
takes O(n(log Φ + log n)) time.

3 From Bounded Spread to Bounded Radii

To get Theorem 2, we extend Alg. 1 from §2. We show
that the spread is irrelevant: points that are close to-
gether form cliques in G and can be handled through
classic spanners; points that are far away from each
other form pairwise independent components.

Given t, we pick the separation parameter c large
enough. We scale P such that the smallest radius is
c. Let M = O(Ψ) be the largest radius. We par-
tition P into independent components. For this, we
put around each p ∈ P an axis-parallel square of side
length 2M . The connected components of the inter-
section graph of the squares give the sets. We state
this in the next lemma. whose proof we omit.

Lemma 10 In O(n log n) time, we can partition P
into sets P1, . . . , P` of diameter O(nΨ) so that for i 6=
j, no point in Pi can reach a point in Pj in G.

By Lemma 10, we may assume that P has diameter
O(nΨ). As in §2, we compute a quadtree T for P with
L levels and L = O(log(nΨ)). Unlike in §2, T does not
directly yield a c-separated annulus decomposition for
G. Def. 1(ii) does not hold, since there may be edges
in G that do not go between neighboring cells. These
are the short edges.

First, we handle very short edges: let v be a level 0
node of T with associated cell σv ∈ Q0. Let Q ⊆ P be
the points in cells of Q0 with distance at most c/2−3
from σv. Since any two points in Q have distance at
most c, Q is a clique in G. We compute a (classic)
t-spanner for Q in O(|Q| log |Q|) time [4]. Since any
p ∈ P is in O(c2) such spanners, we generate O(n)
edges in total and require O(n log n) running time.

Second, we handle not quite so short edges: for
each q ∈ P , let v be the level 0 node of T whose
cell σv contains q. For any non-empty σ′ ∈ Q0 with
d(σv, σ

′) ∈ (c/2− 3, c− 2), we take an arbitrary point
r ∈ σ′ ∩ P and add the edge −→rq to our spanner. All
these edges have length at most c and thus are edges
in G. This takes O(n) time and creates O(n) edges.

Finally, we handle the remaining edges: we mark
all points in P as active, and we run Alg. 1 from §2
for the cells of T . Call the resulting graph H.

As in Lemma 6, we can show inductively that each
edge of G is approximated in H. The differences are in
the base case: if the shortest edge in G is very short,
the classic spanner does the job. If it is a not quite
so short, a calculation as in Lemma 6 shows that we
pick it. Otherwise, the base case is as in Lemma 6.

Lemma 11 For any t > 1, there are constants c,k
such that the graph H as above is a t-spanner for G.

Thm. 2 follows as in §2. The running time analysis
goes as in Lemma 9, but the quadtree has O(log n +
log Ψ) levels.
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[3] M. Fürer and S. P. Kasiviswanathan. Spanners for ge-
ometric intersection graphs with applications. J. Com-
put. Geom., 3(1):31–64, 2012.

[4] G. Narasimhan and M. H. M. Smid. Geometric span-
ner networks. Cambridge University Press, 2007.

[5] D. Peleg and L. Roditty. Localized spanner construc-
tion for ad hoc networks with variable transmission
range. TOSN, 7(3), 2010.

[6] A. C.-C. Yao. On Constructing Minimum Spanning
Trees in k-Dimensional Spaces and Related Problems.
SIAM J. Comput., 11(4):721–736, 1982.

175



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Constrained Generalized Delaunay Graphs Are Plane Spanners

Prosenjit Bose∗ Jean-Lou De Carufel∗ André van Renssen†,‡

Abstract

We look at generalized Delaunay graphs in the con-
strained setting by introducing line segments which
the edges of the graph are not allowed to cross. Given
an arbitrary convex shape C, an unconstrained Delau-
nay graph is constructed by adding an edge between
two vertices p and q if and only if there exists a homo-
thet of C with p and q on its boundary that does not
contain any other vertices. We show that, regardless
of the convex shape used to construct the constrained
Delaunay graph, there exists a constant t such that it
is a plane t-spanner.

1 Introduction

A geometric graph G is a graph whose vertices are
points in the plane and whose edges are line segments
between pairs of points. Every edge is weighted by
the Euclidean distance between its endpoints. The
distance between two vertices u and v in G, denoted
by δG(u, v) is defined as the sum of the weights of the
edges along the shortest path between u and v in G.
A subgraph H of G is a t-spanner of G (for t ≥ 1) if
for each pair of vertices u and v, δH(u, v) ≤ t ·δG(u, v).
The smallest value t for which H is a t-spanner is
the spanning ratio or stretch factor of H. The graph
G is referred to as the underlying graph of H. The
spanning properties of various geometric graphs have
been studied extensively in the literature (see [5] for a
comprehensive overview of the topic).

Most of the research has focused on constructing
spanners where the underlying graph is the complete
Euclidean geometric graph. We study this problem in
a more general setting with the introduction of line
segment constraints. Specifically, let P be a set of
points in the plane and let S be a set of line segments
with endpoints in P , with no two line segments inter-
secting properly. The line segments of S are called
constraints. Two vertices u and v can see each other
or are visible to each other if and only if either the line
segment uv does not properly intersect any constraint
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or uv is itself a constraint. If two vertices u and v
can see each other, the line segment uv is a visibility
edge. The visibility graph of P with respect to a set
of constraints S, denoted Vis(P, S), has P as vertex
set and all visibility edges as edge set. In other words,
it is the complete graph on P minus all edges that
properly intersect one or more constraints in S.

This setting has been studied extensively within the
context of motion planning amid obstacles. Clark-
son [6] was one of the first to study this problem
and showed how to construct a linear-sized (1 + ε)-
spanner of Vis(P, S). Subsequently, Das [7] showed
how to construct a spanner of Vis(P, S) with con-
stant spanning ratio and constant degree. Bose and
Keil [3] showed that the Constrained Delaunay Tri-
angulation is a 4π

√
3/9 ≈ 2.419-spanner of Vis(P, S).

The constrained Delaunay graph where the empty con-
vex shape is an equilateral triangle was shown to be a
2-spanner of Vis(P, S) [2].

We show that the constrained generalized Delaunay
graph G is a spanner whose spanning ratio depends
solely on the empty convex shape C used to create
it: We show that G satisfies the αC -diamond property
and the visible-pair κC-spanner property (defined in
Section 4), which implies that it is a t-spanner for:

t =





2κC ·max
(

3
sin(αC/2)

, κC

)
, for triangulations

2κ2C ·max
(

3
sin(αC/2)

, κC

)
, otherwise.

2 Preliminaries

Throughout this paper, we fix a convex shape C. We
assume without loss of generality that the origin lies
in the interior of C. A homothet of C is obtained by
scaling C with respect to the origin, followed by a
translation.

Given a set of vertices P and a set of constraints
S, we now define the constrained generalized Delau-
nay graph. Given any two visible vertices p and q,
let C(p, q) be any homothet of C with p and q on
its boundary. The constrained generalized Delaunay
graph contains an edge between p and q if and only
if there exists a C(p, q) such that C(p, q) does not
contain any vertices visible to both p and q. Note
that this implies that constraints are not necessarily
edges of the constrained generalized Delaunay graph.
Joe and Wang showed that the constrained general-
ized Delaunay graph is not necessarily the dual of the
constrained Voronoi diagram [9].

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2.1 Auxiliary Lemmas

Next, we present three auxiliary lemmas that are
needed to prove our main results. First, we refor-
mulate a lemma that appears in [10].

Lemma 1 Let C be a convex closed curve in the
plane. The intersection of two distinct homothets of
C is the union of two sets, each of which is either a
segment, a single point, or empty.

We continue with a property of visibility graph
from [2]. To avoid confusion, we define that we call a
region empty if it does not contain any vertex of P .

Lemma 2 Let u, v, and w be three arbitrary points
in the plane such that uw and vw are visibility edges
and w is not the endpoint of a constraint intersect-
ing the interior of triangle uvw. Then there exists a
convex chain of visibility edges from u to v in triangle
uvw, such that the polygon defined by uw, wv and
the convex chain is empty and does not contain any
constraints.

Given two vertices p and q that can see each other
and a convex polygon C(p, q) with p and q on its
boundary, we look at the constraints that have p as
an endpoint and the edge(s) of C(p, q) on which p
lies and extend them to half-lines that have p as an
endpoint (see Figure 1). Given the cyclic order of these
half-lines around p and the line segment pq, we define
the clockwise neighbor of pq to be the half-line that
minimizes the strictly positive clockwise angle with pq.
Analogously, we define the counterclockwise neighbor
of pq to be the half-line that minimizes the strictly
positive counterclockwise angle with pq. We define the
cone Cpq that contains q to be the region between the
clockwise and counterclockwise neighbor of p. Finally,
let C(p, q)pq , the region of C(p, q) that contains q with
respect to p, be the intersection of C(p, q) and Cpq .

p

q

C(p, q)

r

s

C(p, q)pq

Figure 1: Defining the region of C(p, q) that contains
q with respect to p.

Lemma 3 Let p and q be two vertices that can see
each other and let C(p, q) be any convex polygon with
p and q on its boundary. If C(p, q) contains a vertex
x in C(p, q)pq that is visible to p, then C(p, q) contains
a vertex y that is visible to both p and q and triangle
pyq is empty.

Proof. We have two visibility edges, namely pq and
px. Since x lies in C(p, q)pq , p is not the endpoint of a
constraint such that q and x lie on opposite sides of
the line through this constraint. Hence, we can apply
Lemma 2 and we obtain a convex chain of visibility
edges from x to q and the polygon defined by pq, px
and the convex chain is empty and does not contain
any constraints. Furthermore, since the convex chain
is contained in pxq, which is contained in C(p, q), every
vertex along the convex chain is contained in C(p, q).

Let y be the neighbor of q along this convex chain.
Hence, y is visible to q and contained in C(p, q). Also,
p can see y, since the line segment py is contained in
the polygon defined by pq, px and the convex chain,
which is empty and does not contain any constraints.
This implies that triangle pyq is empty. �

3 Planarity

Before we show that the constrained generalized De-
launay graph is a spanner, we show that it is plane.

Lemma 4 Let pq be an edge of the constrained gen-
eralized Delaunay graph. The line segment pq does
not contain any vertices other than p and q.

Lemma 5 The constrained generalized Delaunay
graph is plane.

Proof. We prove this by contradiction, so assume that
there exist two edges pq and rs that intersect properly,
i.e. not at their endpoints. It follows from Lemma 4
that neither p nor q lies on rs and that neither r nor
s lies on pq. Since pq is contained in C(p, q) and rs is
contained in C(r, s), C(p, q) and C(r, s) intersect.

We first show that this implies that p ∈ C(r, s),
q ∈ C(r, s), r ∈ C(p, q), or s ∈ C(p, q). If either
p ∈ C(r, s) or q ∈ C(r, s), we are done, so assume that
neither p nor q lies in C(r, s). Lemma 1 states that
C(p, q) and C(r, s) intersect each other at most twice.
These intersections split the boundary of C(p, q) into
two parts: one that is contained in C(r, s) and one
that is not. Since p 6∈ C(r, s) and q 6∈ C(r, s), p and
q lie on the arc of C(p, q) that is not contained in
C(r, s) (see Figure 2). However, pq intersects C(r, s),
since otherwise pq cannot intersect rs. Let x and y
be the two intersections of pq with the boundary of
C(r, s) (if the boundary of C(r, s) is parallel to pq,
x and y are the two endpoints of the interval of this
intersection). We note that x and y split C(r, s) into
two parts, one of which is contained in C(p, q), and
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that r and s cannot lie on the same part. In particular,
one of r and s lies on the part that is contained in
C(p, q), proving that r ∈ C(p, q), or s ∈ C(p, q).

p

q

r

s
x

y

z

C(p, q)

C(r, s)

Figure 2: C(p, q) and C(r, s) intersect and p and q
intersect C(r, s) at x and y.

In the remainder of the proof, we assume without
loss of generality that r ∈ C(p, q) (see Figure 2). Let
z be the intersection of pq and rs. Hence, z can
see both p and r. Also, z is not the endpoint of
a constraint intersecting the interior of triangle pzr.
Therefore, it follows from Lemma 2 that there exists
a convex chain of visibility edges from p to r. Let v
be the neighbor of p along this convex chain. Since
v is part of the convex chain, which is contained in
pzr, which in turn is contained in C(p, q), it follows
that v is a vertex visible to p contained in C(p, q).
Furthermore, since the polygon defined by pz, zr and
the convex chain does not contain any constraints,
v lies in C(p, q)pq . Thus, it follows from Lemma 3
that there exists a vertex in C(p, q) that is visible to
both p and q, contradicting that pq is an edge of the
constrained generalized Delaunay graph. �

4 Spanning Ratio

Let x and y be two distinct points on the boundary ∂C
of C. These two points split ∂C into two parts. For
each of these parts, there exists an isosceles triangle
with base xy such that the third vertex lies on that
part of ∂C. We denote the base angles of these two
triangles by αx,y and α′x,y. We define αC as follows:
αC = min{max(αx,y, α

′
x,y) : x, y ∈ ∂C, x 6= y}.

Given a graph G and an angle 0 < α < π/2, we say
that an edge pq of G satisfies the α-diamond property,
when at least one of the two isosceles triangles with
base pq and base angle α does not contain any vertex
visible to both p and q. A graph G satisfies the α-
diamond property when all of its edges satisfy this
property [8]. Using a proof analogous to the proof of
Lemma 3 in [1], we can show the following:

Lemma 6 Let C be any convex polygon. The con-
strained generalized Delaunay graph satisfies the αC-
diamond property.

Next, let O be a point in the interior of C and
let x and y be two distinct points on ∂C, such that
x, y, and O are collinear. Again, x and y split
∂C into two parts. Let `x,y and `′x,y denote the
length of these two parts. We define κC,O as follows:
κC,O = max{max(`x,y, `

′
x,y)/|xy| : x, y ∈ ∂C, x 6=

y, and x, y, and O are collinear}.
We note that the constrained generalized Delaunay

graph does not depend on the location of O inside C.
Therefore, we define κC as follows: κC = min{κC,O :
O is in the interior of C}.

Given a constrained generalized Delaunay graph G,
let p and q be two vertices on the boundary of a face
f of the constrained generalized Delaunay graph, such
that p can see q and the line segment pq does not
intersect the exterior of f . If for every such pair p and
q on every face f , there exists a path in G of length at
most κ · |pq|, then G satisfies the visible-pair κ-spanner
property. Given a path between two vertices p and q,
we call the path one-sided, if all vertices lie above pq
or all vertices lie below pq.

Let a set of k + 1 points v1, ..., vk+1 be given, such
that all points lie on one side of the line through v1 and
vk+1. For ease of exposition, assume the line through
v1 and vk+1 is the x-axis and all points lie on or above
this line. We consider only point sets for which there
exists C1, ..., Ck, a set of homothets of C, such that
the center of each homothet lies on the x-axis, Ci
has vi and vi+1 on its boundary, and no Ci contains
any vertices other than vi and vi+1. Let ∂C be the
boundary of C above the x-axis and let ∂(vi, vi+1) be
the part of the boundary of Ci between vi and vi+1

that lies above the x-axis.

Lemma 7 Let C(v1, vk+1) be the homothet with v1
and vk+1 on its boundary and its center on the x-axis.

It holds that
∑k
i=1 |∂(vi, vi+1)| ≤ |∂C(v1, vk+1)|.

Lemma 8 The constrained generalized Delaunay
graph satisfies the visible-pair κC-spanner property.

Proof. Let p and q be two vertices on the boundary of
a face f , such that p can see q and the line segment pq
does not intersect the exterior of f . Assume without
loss of generality that pq lies on the x-axis. Let C(p, q)
be the homothet of C with p and q on its boundary
and its center on pq. We aim to show that there
exists a path between p and q of length at most κC ·
|pq|. Since κC is at least |∂C(p, q)|/|pq|, showing that
there exists a path between p and q of length at most
|∂C(p, q)| completes the proof. If pq is an edge of the
constrained generalized Delaunay graph, this follows
from the triangle inequality.

We grow a homothet C ′ with its center on pq by
moving its center from p to q, while maintaining that
p lies on the boundary of C ′. Let v1 be the first vertex
hit by C ′ that is visible to p and lies in C(p, q)pq . We
assume without loss of generality that v1 lies above pq.
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Since v1 is the first vertex satisfying these conditions,
pv1 is either an edge or a constraint: Since v1 is the
first visible vertex we hit in C(p, q)pq , we have that
C(p, q)pq ∩ C ′ contains no vertices visible to p. Hence,
there is no vertex visible to both p and v1. Therefore,
Lemma 3 implies that C(p, q)pq ∩ C ′ does not contain
any vertices visible to v1. Finally, if pv1 is not a con-
straint, C(p, q)pq ∩C ′ contains the region that is visible
to both p and v1. Hence, if pv1 is not a constraint,
the region that is visible to both p and v1 does not
contain any vertices and pv1 is an edge.

We continue constructing a sequence of vertices
p, v1, v2, ..., vk, q until we hit q by moving the center of
C ′ along pq towards q and each time we hit a vertex
vi, we require that it lies on the boundary of C ′ until
we hit the next vertex vi+1 that is visible to vi and
vi is not the endpoint of a constraint that intersects
the interior of triangle vi−1vivi+1. Since vi+1 is the
first vertex satisfying these conditions starting from
vi, vivi+1 is either an edge or a constraint. This in
turn implies that these vertices all lie above pq, since
pq is visible and does not intersect the exterior of f .

Unfortunately, we cannot assume that there exists
an edge between every pair of consecutive vertices: If
vivi+1 is a constraint, there can be vertices visible to
both vi and vi+1 above the constraint. For the pairs
of vertices vi, vi+1 that do not form an edge, we refine
the construction of the sequence between them: We
start with C ′ such that it does not cross vivi+1 and
vi lies on its boundary. We construct a sequence of
vertices from vi to vi+1 by moving the center of C ′

along pq towards q. For the first vertex we hit, we
require that it is visible to vi and lies in C ′vivi+1

.

We continue moving the center of C ′ along pq to-
wards q, but we now maintain that v′i lies on the
boundary of C ′. Each time we hit a vertex vj , we
require that it lies on the boundary of C ′ until we hit
the next vertex v′j+1 that is visible to vj and vj is not
the endpoint of a constraint that intersects the interior
of vj−1vjvj+1. In other words, we construct a more
fine-grained sequence when consecutive vertices define
a constraint and there is no edge between them. Note
that we may need to repeat this process a number
of times, since there need not be edges between the
vertices of the finer grained sequence either.

This way, we obtain a path p, v′1, v
′
2, ..., v

′
l, q from

p to q that lies above pq. Since C is convex, we can
upper bound the length of each edge vivi+1 by the
part of the boundary the homothet with vi and vi+1

on its boundary and its center on pq, that does not
intersect pq. Hence, the total length of the path is
upper bounded by the length of the union of these
partial boundaries. By construction, none of the homo-
thets corresponding to consecutive vertices along the
path contain any of the other vertices along the path.
Hence, we can apply Lemma 7 and it follows that the
total length of the path is at most |∂C(p, q)|. �

Das and Joseph [8] showed that any plane graph
that satisfies the diamond property and the good poly-
gon property (similar to the visible-pair κ-spanner
property) is a spanner. Subsequently, Bose et al. [4]
improved slightly on the spanning ratio. They showed
that a geometric (constrained) graph G is a spanner of
the visibility graph when it: (1) is plane, (2) satisfies
the α-diamond property, (3) the spanning ratio of any
one-sided path in G is at most κ, and (4) satisfies the
visible-pair κ′-spanner property. In particular, G is a
t-spanner for t = 2κκ′ ·max (3/ sin(α/2), κ).

It follows from Lemmas 5, 6, and 8 that the con-
strained generalized Delaunay graph satisfies these four
properties. Thus, we obtain the following theorem:

Theorem 9 The constrained generalized Delaunay
graph G is a t-spanner for

t =





2κC ·max
(

3
sin(αC/2)

, κC

)
, for triangulations

2κ2C ·max
(

3
sin(αC/2)

, κC

)
, otherwise.
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Two-Level Rectilinear Steiner Trees

Stephan Held∗ Nicolas Kämmerling∗

Abstract

Given a set P of terminals in the plane and a partition
of P into k subsets P1, . . . , Pk, a two-level rectilinear
Steiner tree consists of a rectilinear Steiner tree Ti con-
necting the terminals in each set Pi (i = 1, . . . , k) and
a top-level tree Ttop connecting the trees T1, . . . , Tk.
The goal is to minimize the total length of all trees.
This problem arises naturally in the design of low-
power physical implementations of parity functions on
a computer chip.

For bounded k we present a polynomial time ap-
proximation scheme (PTAS) that is based on Arora’s
PTAS for rectilinear Steiner trees after lifting each
partition into an extra dimension.

For the general case we propose an algorithm that
predetermines a connection point for each Ti and Ttop
(i = 1, . . . , k). Then, we apply any approximation
algorithm for minimum rectilinear Steiner trees in the
plane to compute each Ti and Ttop independently.

This gives us a 2.37-factor approximation with a
running time of O(|P | log |P |) suitable for fast practi-
cal computations. The approximation factor reduces
to 1.63 by applying Arora’s approximation scheme in
the plane.

1 Introduction

We consider the two-level rectilinear Steiner tree prob-
lem (R2STP) that arises from an application in VLSI
design. Consider the computation of a parity func-
tion of k input bits using 2-input XOR-gates. Due to
the symmetry, associativity, and commutativity of the
XOR function, this can be realized by an arbitrary
binary tree with k leaves, rooted at the output sim-
ply by inserting an XOR-gate at every internal vertex
[11, 12]. Throughout this paper we consider the parity
function as a placeholder for any fan-in function of
the type x1 ◦ x2 ◦ · · · ◦ xk, where ◦ is a symmetric,
associative, and commutative 2-input operator, i. e.
◦ ∈ {⊕,∨,∧}.

On a chip such a tree has to be embedded into
the plane and all connections must be realized by
rectilinear segments. If each input and the output are
single points on the chip, a realization of minimum
length and thus power consumption is given by a

∗Research Institute for Discrete Mathematics, University of
Bonn,
held@or.uni-bonn.de, kaemmerling@or.uni-bonn.de.

p1

p2

p3

p1

p2

p′1

p′2

p3

Figure 1: On the left, we have two inputs p1 and
p2 and a single output p3. The XOR-gate should be
placed at the median of the three terminals. If the
inputs have the side outputs p′1 and p′2, the XOR-gate
should be placed at p3, saving the horizontal length.

minimum length rectilinear Steiner tree. This is a tree
connecting the inputs and the output by horizontal
and vertical line segments using additional so-called
Steiner vertices to achieve a shorter length than a
minimum spanning tree. At each Steiner vertex of
degree three an XOR-gate is placed. Higher degree
vertices can be dissolved into degree three vertices
sharing their position. Figure 1 shows an example of
an embedded parity function on the left.

In practice input signals may be needed for other
computations on the chip and thus delivered to other
side outputs. Similarly, the result may have to be
delivered to multiple output terminals. Thus, each
input and its successors and the output terminals must
be connected by separate Steiner trees as well. These
trees are then connected by a top-level Steiner tree into
which the XOR-gates will be inserted. Considering the
additional terminals allows to construct a potentially
shorter Steiner tree as shown in Figure 1 on the right.
Algorithms ignoring the side outputs cannot guarantee
an approximation factor better than two, as we will
see in Section 2.

This motivates the definition of the minimum two-
level rectilinear Steiner tree problem, where we are
given a set P ⊂ R2 of n terminals and a partition of
P into k subsets P1, . . . , Pk.

A two-level rectilinear Steiner tree T =
(Ttop, T1, . . . , Tk) consists of a Steiner tree Ti
for each i ∈ {1, . . . , k} connecting the terminals
in Pi and a (group) Steiner tree Ttop connecting
the embedded trees {T1, . . . , Tk}. We call Ttop the
top-level tree. Note that all trees are allowed to cross.
The objective is to minimize the total length of all
trees

l(T ) :=
k∑

i=1

l(Ti) + l(Ttop),

where l(T ′) :=
∑
{x,y}∈E(T ′) ‖x− y‖1 is the `1-length

of a Steiner tree T ′.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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For each i ∈ {1, . . . , k} the top-level tree and Ti
intersect in at least one point. We can select one such
point qi ∈ Ttop ∩ Ti and call it connection point for Ti
and Ttop. Then Ttop is a Steiner tree for the terminals
{q1, . . . , qk} and each Ti is a Steiner tree for Pi ∪ {qi}.

Obviously, this problem is NP-hard as it contains
the minimum rectilinear Steiner tree problem in two
ways: if k = 1 or if |Pi| = 1 for i ∈ {1, . . . , k}.

Designing the top-level tree as a stand-alone problem
is hard. If all subtrees Ti (i ∈ {1, . . . , k}) are fixed,
Ttop cannot be approximated to arbitrary quality, as
the group Steiner tree problem for connected groups
in the Euclidean plane cannot be approximated within
a factor of (2− ε) [9]. However we are in a more lucky
situation as we can tradeoff the lengths of bottom-level
and top-level trees.

To the best of our knowledge the two-level rectilinear
Steiner tree problem has not been considered before
despite its practical importance [11, 12]. It is loosely
related to the hierarchical network design problems
[1, 5, 6] or multi-level facility location problems [3, 4].
However, those problems are structurally different,
typically considering problems in graphs, and do not
apply to our case.

In [11], ordinary rectilinear Steiner trees were used
to build power efficient fan-in trees, when each input
and the output consists of a single terminal. In prac-
tice designers are also interested in the depth of the
constructed circuit [12]. However, for finding good
power versus depth tradeoffs a better understanding
of short solutions is an essential prerequisite and the
aim of our work.

1.1 Our Contribution

In Section 2, we show that the näıve approach of
picking a random terminal from each partition as a
connection point to the top-level tree and building the
bottom-level trees and top-level as separate instances
gives a 2α-factor approximation, where α is the ap-
proximation factor of the used minimum Steiner tree
algorithm. This works for arbitary metrics.

Then in Section 3 and 4, we focus on rectilinear
instances. In Section 3 we show how to lift our in-
stance into an equivalent (2+k)-dimensional rectilinear
Steiner tree instance. If the number k of partitions is
bounded by a constant, we obtain a PTAS by applying
Arora’s PTAS for rectilinear Steiner trees [2].

As our main result, we improve the approximation
guarantee for unbounded k from (2 + ε) to 1.63 in Sec-
tion 4. Using spanning tree heuristics, this approach
turns also into a fast practical algorithm with running
time O(n log n) and approximation factor 2.37.

2 Simple Bottom-Up Construction

A simple bottom-up approach, which works for any
metric space, is to compute a Steiner tree Ti for Pi

T1T2

Ttop

T1T2

Ttop

q1q2

Figure 2: A tight example when choosing connection
points as arbitary points of Pi.

(i = 1, . . . , k). In each Ti we fix a connection point
qi ∈ Pi arbitrarly, compute a Steiner tree Ttop for
{q1, . . . , qk}, and return T = (Ttop, T1, . . . , Tk).

Theorem 1 The simple bottom-up approach is a 2α-
factor approximation algorithm for the minimum two-
level Steiner tree problem, if we use an α-factor ap-
proximation algorithm for the minimum Steiner tree
problem as a subroutine.

Proof. Let T be the two level Steiner tree computed
by the simple bottom-up approach and let T ? =
(T ?top, T

?
1 , . . . , T

?
k ) be a minimum two-level Steiner tree.

Let be q?i ∈ T ?top ∩ T ?i the connection point of the
optimum two-level Steiner tree. Since T ?i is a Steiner
tree on {q?i } ∪ Pi, we have dist(q?i , qi) ≤ l(T ?i ). Thus,

l(T ) ≤ α · l(T ?top) + α
k∑

i=1

dist(q?i , qi) +
k∑

i=1

α · l(T ?i )

≤ α · l(T ?top) + 2α
k∑

i=1

l(T ?i ) ≤ 2α · l(T ?).

�

Figure 2 shows that the factor (2 + ε) is sharp. For
the instance P1 = {(0, 0), (1, 0)}, P2 = {(0, 0), (−1, 0)}
a minimum two-level rectilinear Steiner tree of length
2 is shown on the left with l(Ttop) = 0. On the right, a
bad choice of connection points and minimum Steiner
trees Ttop, T1, and T3 yield a total length of 4.

3 PTAS for a bounded number of partitions

We can reduce the two-level rectilinear Steiner tree
problem in the plane to an ordinary rectilinear Steiner
tree problem in a higher dimensional space, where we
can apply Arora’s PTAS [2].

The idea of the PTAS is to lift every subset
P1, . . . , Pk to an additional dimension. We assume
k > 1. Otherwise the two-level Steiner tree problem is
an ordinary Steiner tree problem. Let P1, . . . , Pk ⊂ R2

be the subsets of a two-level Steiner tree instance, we
define a Steiner tree instance in R2+k. The set of
terminals P ′ is comprised as follows.

For each original terminal x ∈ Pi ⊂ R2 (i ∈
{1, . . . , k}), we add a terminal x′ := (x,K ·ei) ∈ R2+k,
where ei ∈ Rk is the unit vector with value one at the i-
th coordinate and K is a large constant, e. g. we could
choose K as l(B(P )). Now for x ∈ Ph and y ∈ Pi the
distance of their high dimensional copies x′, y′ ∈ P ′ is
‖x′−y′‖1 = ‖x−y‖1+2K‖eh−ei‖1 = ‖x−y‖1+2Kδh,i,

181



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

T2

T1

Ttop
Ttop-space

T1-space

T2-space

Figure 3: A flat Steiner Tree in a lifted instance.

where δh,i is one if h = i and zero otherwise. An ex-
ample of a lifted two-level Steiner tree is given in
Figure 3.

A (k + 2)-dimensional Steiner tree is called flat if
all Steiner points have either the form (x, 0) ∈ R2+k

or (x,K · ei) ∈ R2+k, where x ∈ R2 and ei ∈ Rk is a
unit vector. The following Lemma has essentially been
proven by Snyder [10], who shows that an optimum
Steiner tree can be found in the d-dimensional Hanan
grid [7].

Lemma 2 A (k + 2)-dimensional Steiner Tree T for
P ′ of length l(T ) can be transformed in strongly poly-
nomial time into a (k+ 2)-dimensional flat Steiner tree
T ′ of length at most l(T ).

The following lemma shows the equivalence between
the original two-level rectilinear Steiner tree problem
in the plane and the lifted regular rectilinear Steiner
tree problem.

Lemma 3 If k > 1, a two-level rectilinear Steiner tree
T for P1, . . . , Pk of length l(T ) can be transformed into
a (k + 2)-dimensional Steiner tree T ′ for P ′ of length
at most l(T ) + kK and vice versa.

Proof. We only sketch the proof, details can be found
in [8]. We get T ′ by connecting the lifted components
of T at its connection points by an edge of length
K. Conversely, we flat T by applying Lemma 2 and
replacing edges, s. t. for each j ∈ {3, . . . , k + 2},
T ′ contains at most one edge in direction j, without
increasing the length of the tree. Projecting the edges
onto the first two coordinates we obtain a feasible
two-level Steiner tree of length at most l(T ′)− kK.

�

Theorem 4 For bounded k there is a PTAS for the
two-level rectilinear Steiner tree problem.

Proof. Choose K = l(B(P )) and for ε > 0 set
ε′ := 1

k+1ε. Then compute an (1 + ε′)-approximate
(k+ 2)-dimensional Steiner tree T ′ for the lifted termi-
nal set P ′ with Aroras PTAS [2] that has a poly-
nomial running in bounded dimension. Then we
apply Lemma 3 to obtain a two-level Steiner tree
T = (Ttop, T1, . . . , Tk) for P1, . . . , Pk with length at
most l(T ′)− kK. Let T ′? and T ? be optimum Steiner

trees for P ′ and P . Since l(T ?) ≥ K the length of T
is

l(T ) ≤ l(T ′)− kK ≤ (1 + ε′)l(T ′?)− kK
≤ (1 + ε′)l(T ?) + (1 + ε′)kK − kK
≤ (1 + (k + 1)ε′)l(T ?) = (1 + ε)l(T ?).

�

4 Predetermined Connection Points

In all algorithms of this section we predetermine a
connection point qi for each set Pi (i = 1, . . . , k) and
then call a Steiner tree approximation algorithm for
{q1, . . . , qk} to get Ttop and Pi ∪ {qi} to get Ti (i =
1 . . . , k). We use the fact that we consider rectilinear
instances to obtain better approximation factors than
in Section 2.

4.1 Bounding Box Center

A natural approach is to choose each connection point
as the center of the bounding box B(Pi).

Theorem 5 Using bounding box centers as connec-
tion points, we get a 1.75α-factor approximation algo-
rithm for the two-level rectilinear Steiner tree problem,
when using an α-factor approximation algorithm for
rectilinear Steiner trees as a subroutine.

A detailed analysis can be found in [8], which also
provides a simple example attaining this factor.

4.2 Adjusted Bounding Box Center

We can improve the approximation factor by a more
careful choice of the connection point. For a set Pi
(i ∈ {1, . . . , k}), we call the coordinate system with
origin in the central point of its bounding box the
coordinate system of Pi.

If a set Pi of terminals contains an element in each
quadrant of its bounding box B(Pi), we call the bound-
ing box B(Pi) complete. For subtrees with a complete
bounding box we choose the connection point to the
top-level tree as the central point of the bounding
box as in Section 4.1 and compute a Steiner tree T ′i
for Pi ∪ {qi} as follows: We compute a Steiner tree
T ′i for Pi. Thereby, we embed maximal paths in T ′i
containing only Steiner vertices with degree two so
that each such path has minimum distance to qi while
preserving its length. We then add an edge from qi to
ai, where ai is a point in T ′i minimizing the distance
to qi.

Let T ? = {T ?top, T ?1 , . . . , T ?k } be an minimum two-
level Steiner tree. Again we choose T ?top under all
minimum two-level Steiner trees as large as possible so
that there is a connection point q?i ∈ T ?top∩T ?i ⊆ B(Pi).

We present the main ingredient for the analysis of
the approximation ratio.
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B(Pi)
u v

w

p

p′

qi

Figure 4: An example of the situation in the proof
of Lemma 6. The green diamond is the l1-circle with
radius h around qi.

Lemma 6 Let i ∈ {1, . . . , k} and T ′i , ai be con-
structed as above. If B(Pi) is complete, then l(B(Pi))+
‖qi − ai‖1 ≤ l(T ?i ).

Proof. Define h := ‖qi − ai‖1. Since B(Pi) is com-
plete, T ′i intersects at least three of the four axes of
the coordinate system to Pi. We assume w.l.o.g. that
T ′i intersects the left, upper and right axis.

By the choice of T ′i and h there exist (see also Fig-
ure 4) for all z ∈ [0, h]

p ∈ {(x, y) ∈ Pi : x ≤ −h, y ≤ 0},
p′ ∈ {(x, y) ∈ Pi : x ≥ h, y ≤ 0},
u ∈ {(x, y) ∈ Pi : x < 0, y ≥ h},
vz ∈ Vz := {(x, y) ∈ Pi : x ≥ z, y ≥ h− z}.

Let vh ∈ Vh. If the unique T ?i -paths from p to
u and from p′ to vh intersect, then T ?i connects the
lines {(x, y) : x = 0} and {(x, y) : x = h} twice, and
therefore l(B(Pi)) + h ≤ l(T ?i ).

Otherwise, we can choose a minimum z ≥ 0 such
that there is a v ∈ Vz and the unique T ?i -paths from
p to u and from p′ to v are disjoint. The lines {(x, y) :
y = 0} and {(x, y) : y = h− z} are connected twice in
T ?i . Therefore we get l(B(Pi)) + h− z ≤ l(T ?i ).

If z = 0 we are done. Otherwise, if our statement is
false there is an 0 < ε ≤ z such that ε = l(B(Pi))+h−
l(T ?i ) and a w ∈ Vz− ε2 . Since the unique T ?i -paths from
p to u and from p′ to w are not disjoint, T ?i connects
the lines {(x, y) : x = 0} and {(x, y) : x = z− ε

2} twice.
Therefore we get the contradiction

ε = l(B(Pi)) + h− l(T ?i )
≤ l(B(Pi)) + h− l(B(Pi))− h+ z − z + ε

2 = ε
2 .

�

With Lemma 6 we tradeoff between the cost ‖q?i −
qi‖1 ≤ l(B(P )) to connect qi to T ?top and the cost
‖qi − ai‖1 to connect qi to T ′i . From this we could
derive an approximation factor of 13/8 if all partitions
are complete. In general this is not the case and for
incomplete bounding boxes we shift the connection
points (and the coordinate system) towards the actual
terminals as in Figure 5. A careful analysis using
a similar version of Lemma 6 on the shifted coordi-
nate system (details can be found in [8]) gives us the
following result:

B(Pi)

qi

Figure 5: An example for an incomplete bounding
box. The connection point qi is shifted diagonally to
the upper right until the red box hits a terminal.

Theorem 7 There is a 2.37-factor approximation al-
gorithm with runtime O(n log n) and an 1.63-factor
approximation algorithm in poly-time for the two-level
rectilinear Steiner tree problem.
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Max Shortest Path for Imprecise Points

Yann Disser, Matúš Mihalák, Sandro Montanari

Abstract

We are given a graphG = (V,E) with n vertices where
each vertex corresponds to one of n given polygons
in the plane and two vertices s, t ∈ V . We consider
the problem of placing a point inside each polygon in
order to maximize the shortest path distance between
s and t in the resulting geometric graph. We show
that the problem is hard to approximate for any factor
(1− ε) with ε < 1/4, even when the polygons consist
only of vertical aligned segments. For the special case
where G is a path, we provide an algorithm computing
an optimum placement in time O(n · k2), where k is
the maximum number of corners of a polygon.

1 Introduction

A geometric graph is a graph where each vertex cor-
responds to a point and the weight of an edge is the
distance between the points it connects. We consider
a set of polygons P, an underlying graph connecting
them, two polygons Ps, Pt ∈ P, and the task of plac-
ing a point inside each polygon such that the shortest
path distance between the points in Ps and Pt in the
resulting geometric graph is maximum among all pos-
sible placements.

Imprecise measurements in real world applications
require to design techniques that are able to cope with
the uncertainty introduced by the unreliable estima-
tions. A natural question in this setting concerns the
computation of the minimum and maximum values
that a geometric object can attain when the exact lo-
cation of each point is unknown, but instead a region
is known that contains it (an imprecise point set).
For example, for imprecise points sets in the form of
segments, squares, or disks, the problems of comput-
ing the smallest minimum spanning tree [2, 3, 8], the
smallest bounding box [9], the smallest enclosing cir-
cle [5, 9], the farthest pair [9], the width [9], the clos-
est pair [9], or the area and perimeter of the convex
hull [8] have been studied.

Another problem that has been researched inten-
sively in this setting is known as the Touring Poly-
gons Problem (in short TPP). Given a sequence of
simple polygons and two points s and t, the problem
asks for a shortest tour starting at s and ending at
t while visiting all polygons in the given order. The
term “tour” comes from the fact that typically (but
not necessarily) s and t are the same point. This

problem is known to be solvable in polynomial time
whenever the polygons are convex and disjoint [4].
It becomes NP-hard for any metric Lp, p ≥ 1, as
soon as we allow non-convexity both for disjoint [1]
and overlapping [4] polygons. The only variant of the
TPP with non-convex polygons admitting a polyno-
mial time algorithm is known for the case of rectilin-
ear axis-aligned polygons under the L1 metric [4]. If
we relax the requirement of computing an exact so-
lution, approximation algorithms for the TPP in the
non-convex case are known [6, 10].

The Shortest Path Problem for imprecise points (in
short SPP) is a natural generalization of the TPP. In-
stead of an ordered sequence of polygons we are now
given a (directed) graph connecting them; the pres-
ence of an edge indicates an “allowed traversal” from
one polygon to the other. Given a starting and an
ending polygon Ps and Pt, we search for a placement
minimizing the shortest path distance of the points in
Ps and Pt in the resulting geometric graph. In general,
the SPP is NP-hard for any metric Lp, p ≥ 1, even for
disjoint segments whose angles with the x-axis are in
{0,±π/4, π/2}. The proof is a straightforward gener-
alization of the NP-hardness proof of the TPP in the
case of non-convex disjoint polygons [1]. However,
the SPP has been proven to be solvable in polyno-
mial time under the L1 metric if the polygons are
(not necessarily convex) axis-aligned rectilinear [2].

So far, the SPP has been studied only in its min-
imum variant, where we look for placements mini-
mizing the shortest path distance between the points
in the given polygons. In this paper we consider
the maximum variant, MAX-SPP, and look for place-
ments maximizing the shortest path distance between
s and t in the resulting geometric graph. We show
that the problem is hard to approximate for any ap-
proximation factor (1 − ε) with ε < 1/4, even when
the polygons consist only of vertically aligned seg-
ments. We also consider the maximum variant of the
TPP and propose an algorithm computing a maxi-
mum placement in O(n ·k2) time, where n is the num-
ber of polygons and k is the largest number of corners
of a polygon in the sequence. The algorithm can be
applied also in the case where the polygons are non-
convex and overlapping, generalizing the only previ-
ously known result on MAX-TPP [7] that considers
only the case of squares and line segments.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: The gadget for cj = vi ∨ vk ∨ vl

2 Max Shortest Path

We now show the hardness of approximation for
MAX-SPP by providing a gap-producing reduction
from 3-SAT. Given a 3-SAT instance, we construct a
MAX-SPP instance and provide two threshold values
τ1, τ2 with τ1−τ2 = 2δ for an arbitrary constant δ > 0.
We show that the MAX-SPP instance admits an op-
timum solution with weight at least τ1 if and only if
the 3-SAT formula admits a satisfying assignment. If
the formula does not admit a satisfying assignment,
the weight of an optimum solution is at most τ2.

In the construction of the MAX-SPP instance we
will make use of degenerate polygons, i.e., points. Note
that in any placement the weight of an edge con-
necting two degenerate polygons is fixed. We will
make use of this observation in the construction of the
MAX-SPP instance when assuming that the weight of
an edge connecting two degenerate polygons p and q
can be set to any weight greater or equal than ‖p−q‖1.
This can easily be achieved by splitting the edge be-
tween p and q and introducing an intermediate point
at a suitable distance from both.

The m clauses and n variables of the 3-SAT for-
mula are represented in the MAX-SPP instance with
gadgets sketched in Figure 1. There is a gadget for ev-
ery clause, one for every variable, and two additional
points s, t. The point s is located at the origin of the
plane and t is located at coordinates (3, 0).

The MAX-SPP instance contains m + n vertically
aligned segments. The middle points of these seg-
ments are equally spread along the x-axis, with the
leftmost and rightmost ones respectively at coordi-
nates (1, 0) and (2, 0). Given an arbitrary constant
δ > 0, the first m segments have length 4δ, and each
of them corresponds to a clause of the 3-SAT formula.
The remaining n segments have length 2δ, and each of
them corresponds to a variable. We use vi to denote

the i-th variable and the segment associated with it;
it will be clear from the context to which of the two
we are referring to. Similarly, we use cj to denote the
j-th clause and the corresponding segment.

Variable gadgets. Given a segment vi at x-
coordinate xi, we place a point to its right, at co-
ordinates (xi+

1
4γ , 0), and two points to its left, at co-

ordinates (xi− 1
4γ ,−δ), (xi− 1

4γ , δ), where γ := m+n.
We use ti and fi to denote respectively these last two
points. We introduce in the underlying graph edges
connecting vi to each of these three points. Further-
more, the point to the right of vi is also connected to
t with an edge of weight 2. Points ti and fi are con-
nected in a way specified in the following to gadgets of
clauses where vi appears as a literal. In the reduction,
a point placed in the (open) bottom half of vi corre-
sponds to assign the value “true” to vi. Conversely,
a point in the (closed) top half of vi corresponds to
assign the value “false” to vi.

Clause gadgets. Given a segment cj at x-coordinate
xj , we place 5 points next to it, at coordinates (xj −
1
4γ ,−δ), (xj − 1

4γ , δ), (xj + 1
4γ ,−2δ), (xj + 1

4γ , 0), (xj +
1
4γ , 2δ). We introduce in the underlying graph edges
connecting cj to each of these points. Among these
points, those located to the left of cj are also con-
nected to s with edges with weight 2 + δ. The
remaining points are connected to variable gadgets
as follows. We associate the points at coordinates
(xj + 1

4γ ,−2δ), (xj + 1
4γ , 0), (xj + 1

4γ , 2δ) respectively
with the variables appearing in cj as literals. If vi ap-
pears in cj as a positive literal, we connect the point
associated to it to the point fi of the variable gad-
get of vi. If vi appears in cj as a negative literal, we
connect the point associated with it to ti. We set the
weight of these edges to 2 + 3δ.

Theorem 1 For any metric Lp, p ≥ 1, it is NP-hard
to approximate MAX-SPP for any factor (1− ε) with
ε < 1

4 .

Proof. We first create a MAX-SPP instance contain-
ing a gadget for every clause and every variable of the
given 3-SAT. Then, we consider every path between
the points s and t in the underlying graph of the con-
structed MAX-SPP instance and provide bounds on
its weight in any placement. For simplicity, in the fol-
lowing we assume that distances are measured using
the L1 metric. It is however easy to see that similar
bounds hold also for any metric Lp with p ≥ 1.

For every variable vi there is an st-path for every
clause where vi appears as a literal. By construction
of the variable gadgets, we can assume without loss of
generality that the point in segment vi in any place-
ment to be located either in one of its endpoints or in
its middle point.
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Suppose there exists a satisfying assignment for the
3-SAT instance. We then place a point arbitrarily in
the top endpoint of a segment vi if its value in the
assignment is false and in the bottom otherwise. If a
clause cj is satisfied by vi, we place in the segment cj
a point at the same y-coordinate as the point to the
right of cj associated with vi. If cj is satisfied by more
than one variable, we choose one of them arbitrarily.

Consider now any st-path through a clause cj and
a variable vi. If vi is the chosen variable for cj , the
weight of the path between a point to the left of cj to
the point to the right of cj associated with vi is at least
δ + 1

2γ . Without loss of generality, let vi appear with
positive sign in cj . The st-path visits fi and the point
in vi in the placement is located at its bottom. Thus,
the weight of the path between fi and the point to
the right of vi is at least 3δ+ 1

2γ . Since the remaining
edges of the path have fixed weight, the overall weight
of the st-path in the placement is

τ1 := 6 + 8δ +
1

γ
.

If vi is not the chosen variable for cj , the weight of
the path between the point to the left of vi to its right
might be smaller, but still at least δ+ 1

2γ . On the other
hand, the weight between the point to the left of cj
to its right is only greater, at least 3δ + 1

2γ . Also in
this case, the weight of the st-path is at least τ1.

Suppose now that a satisfying assignment does not
exist, and consider an optimum placement and the
corresponding assignment of variables according to
whether the point in segment vi lies in its top or bot-
tom half. Since the formula is not satisfiable, we can
always find a non satisfied clause cj ; let vi be a vari-
able appearing in cj . It is easy to see that there always
exists an st-path visiting both cj and vi with weight
at most

τ2 := 6 + 6δ +
1

γ
.

Suppose that there exists a polynomial-time algo-
rithm approximating MAX-SPP for some factor (1−ε)
with ε < 1/4. For any instance of 3-SAT, we then
construct the above gadgets and calculate τ1 and τ2.
Since τ1 − τ2 = 2δ, setting δ such that 2δ

τ1
> ε and us-

ing the approximation algorithm, we would be able
to decide whether the weight of an optimum solu-
tion is greater or smaller respectively than τ1 or τ2.
Thus, we could determine in polynomial time whether
there exists a satisfying assignment for the 3-SAT in-
stance. �

We observe that, in the above proof, the fact that
there do not exist polynomial-time algorithms for
MAX-SPP with approximation factor better than 3/4
comes from the ratio 2δ

τ1
being≈ 1

4 ( δ
δ+1 ). It is an inter-

esting open problem to determine whether there exist
an algorithm with approximation factor exactly 3/4

(therefore making the above bound tight), or whether
the problem cannot be approximated in polynomial
time even for ε ≥ 1/4.

3 Max Touring Polygons

In the Max Touring Polygons Problem (or MAX-TPP
for short), we are given an ordered sequence of polyg-
onal regions P1, . . . , Pn and two points s, t. We are
asked for a longest tour that starts at s, visits the
polygons in the given order, and ends at t. The MAX-
TPP is a special case of MAX-SPP where the under-
lying graph connecting the polygons is a path.

Contrary to the general case, we will show that a
solution to MAX-TPP can be found in polynomial
time, even if the polygons are non-convex and over-
lapping. The algorithm for computing such a solution
is based on the observation that the points belonging
to an optimum placement form a subset of the cor-
ners of the n polygons. This observation is proved
by the following lemma. In the following, we assume
that distances are measured with the L2 metric. It is
straightforward to generalize the proofs for any metric
Lp with p ≥ 1.

Lemma 2 There exists an optimum MAX-TPP
placement such that every point in the placement is
a corner of the corresponding polygon.

Proof. We prove the statement by showing that,
given a placement resulting in a longest s-t tour (an
optimum placement) we can construct an equivalent
placement p′ where every pi ∈ p′ is a corner of the
corresponding polygon Pi.

First, we show that there always exists an optimum
placement where no point lies in the interior of the
corresponding polygon. Consider a point pi ∈ p ly-
ing in the interior of Pi and the points pi−1 and pi+1

(where p0 := s and pn+1 := t). If pi−1 = pi mov-
ing pi away from its position in any direction would
not decrease the weight of the optimum placement.
If pi−1 6= pi, consider the ray from pi−1 towards pi.
This ray crosses a point q on the perimeter of Pi af-
ter crossing pi. Furthermore, the triangle induced by
pi−1, pi, pi+1 is completely contained in the triangle
induced by pi−1, q, pi+1. Therefore, by triangle in-
equality the weight of the tour does not decrease if
we replace pi with q. We can repeatedly apply this
statement for every point of p until every pi ∈ p lies
on the perimeter of the corresponding polygon Pi.

Given an optimum placement p where every point
lies on the perimeter of the corresponding polygon, we
show how to construct an optimum placement where
every point lies on a corner. Consider a point pi ∈ p
not lying on a corner of Pi and the segment ab of
the perimeter of Pi on which pi lies. Since the sum
‖pi−1 − r‖2 + ‖r − pi+1‖2 is convex for every r ∈
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ab the maximum value is obtained when r is one of
the endpoints, either a or b; assume without loss of
generality that it is maximized when r is equal to a.
Therefore, the weight of the tour does not decrease
if we replace pi with a (that is a corner of Pi). By
repeatedly applying this statement, we can replace
every point of p not lying on a corner until every
pi ∈ p lies on a corner of the corresponding Pi. �

3.1 Algorithm

We can use the above theorem to design an algorithm
computing an optimum MAX-TPP placement. Our
solution uses an auxiliary graph D = (VD, ED), in
which there is a vertex v ∈ VD for every corner of
a polygon Pi and two special vertices vs, vt ∈ VD
corresponding to the points s, t. There is an edge
(u, v) ∈ ED for every vertex u corresponding to a cor-
ner of Pi and every vertex v corresponding to a corner
of Pi+1, for i = 1, . . . , n− 1. Furthermore, there is an
edge from vs to every vertex corresponding to a cor-
ner of P1 and from vt to every vertex corresponding
to a corner of Pn. We assign a weight to each edge
equal to the distance between its endpoints. The fol-
lowing theorem shows that a longest path between vs
and vt in D corresponds to an optimum MAX-TPP
placement.

Theorem 3 Given a longest vs-vt path P =
u0, . . . , un+1 where u0 = vs and un+1 = vt, the place-
ment p where every pi ∈ p corresponds to ui for every
i = 1, . . . , n is an optimum MAX-TPP placement.

Proof. Observe that the weight of P is equal to the
weight of the tour induced by p. For the sake of con-
tradiction, assume that there exists a placement q in-
ducing a tour that is longer than the one induced by
p. By Theorem 2 we can assume the points of q to be
corners of the polygons P1, . . . , Pn. Thus, the vertices
corresponding to the points of q are connected in D,
and we can find a path Q from vs to vt following these
vertices of weight larger than that of P . �

Computing a longest path in a graph is in general
NP-hard. However, the graph D is not a general graph
but a directed acyclic graph (DAG). To see this note
that there are edges only from vertices of Pi to vertices
of Pi+1. A longest path between vs and vt in a DAG
can be found using a trivial dynamic programming
algorithm with run-time O(|VD|+ |ED|). To evaluate
|VD| and |ED|, let k be the largest number of corners
of a polygon P1, . . . , Pn. Since D contains a vertex for
every corner of a polygon, one corresponding to s and
one to t, we get |VD| ≥ n·k+2 ∈ O(n·k). Furthermore,
there is an edge from v ∈ VD corresponding to a corner
of Pi to every vertex corresponding to a corner of
Pi+1, for every i = 0, . . . , n (where P0 and Pn+1 are
degenerate polygons corresponding to the points s and

t). Therefore, every vertex of VD is adjacent to at
most k edges, that is, |ED| ∈ O(n · k2). The time to
find an optimum MAX-TPP placement is thus O(n ·
k2).
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Fully autonomous Self-Localization via
Trajectory Representations based on Inflection Points
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Abstract

We present a novel method for self-localization in a
road network in a fully autonomously manner, in par-
ticular not requiring GPS, GSM or WiFi availability.
The new method does not rely on distance informa-
tion but only absolute directional information that
can be easily acquired using an electronic compass
present in almost every current smartphone. Our ap-
proach is based on an inflection-point-based represen-
tation of trajectories in the road network and a re-
spective query data structure.

1 Introduction

The central component of any navigation system is
localizing oneself in the world. Common localization
schemes nowadays are GPS/GLONASS (satellite-
based with a precision up to a few meters), GSM
(cellphone network based, precision 50m–1500m), and
Wifi (based on georeferenced access point BSSIDs,
precision 20m–100m). Except for GPS/GLONASS,
all these methods require the interaction with third
parties when acquiring one’s own position.

A natural question to ask is, whether it is possible
to localize oneself without interacting with third par-
ties. Note that GPS/GLONASS is also not always
available, e.g. due to obstructions by foliage or build-
ings. Our basic assumption is that we are moving in a
road network and the central question is whether we
can use information about how we move around to-
gether with knowledge of the underlying road network
to find out where we are.

1.1 Related Work

In [7] we introduced the concept of path shapes which
allows for fully-autonomous self-localization if one can
measure both distances and changes of direction, e.g.
from the onboard computer present in all modern
cars. So we are given data of the form ”500m straight,
then a 40 degrees left turn, 200m straight, then a 90
degrees right turn, . . . ” and try to use this for self-
localization in the road network which is known to

iDepartment of Computer and Information Science, Univer-
sität Stuttgart, Germany, funke@fmi.uni-stuttgart.de

iiDepartment of Computer Science, Univer-
sität Freiburg, Germany, skilevic@gmail.com,

schirrmr,storandt@informatik.uni-freiburg.de

us. For example, in Figure 1, the green path shape
is given and we want to examine whether this shape
appears somewhere in the road network – with ro-
tations and imprecisions allowed. Our experiments
on actual road networks showed that – when restrict-
ing to quickest/shortest paths on which individuals
tend to move – a rather short prefix of a path typ-
ically suffices to make its shape unique (even under
imprecisions). Based on that we constructed a query
data structure based on a generalized suffix tree [9]
which allows for very fast localization. Note that [7]
essentially relies on a common notion of curve simi-
larity (like Hausdorff or Frechet) and hence crucially
depends on reliable distance information.

A very interesting similarity measure for curves was
proposed by de Berg et al in [3]. They developed the
so-called direction-based Frechet-distance which opti-
mizes over all parameterizations for a pair of curves
like the Frechet distance but differs from the latter in
that it is based on differences between the directions of
movement along the curves, rather than on positional
differences hence being invariant under translations
and scalings. The authors present algorithms to com-
pute several variants of this direction-based Frechet
distance in O(nm) time. In retrospect, the intuition
of our ”directional path shapes” is very related to this
measure proposed by de Berg and Cook. For our spe-
cific application scenario of self-localization, the run-
ning time of their algorithms as well as other algo-
rithms for general curve matching problem (partial
or complete) under Hausdorff or Frechet distance, e.g
[6], [3], [2], [1] are prohibitive, though.

Our Contribution

In this paper we develop a new notion of ’path shape’
together with a similarity measure related to the di-
rectional Frechet distance of [3]. Even with this seem-
ingly less descriptive notion of path shape, character-
istic representations of shortest paths exist with rela-
tively short prefixes in real-world road networks. This
allows for the construction of an efficient query data
structure which supports fast self-localization queries.
Compared to [7], the main novelty and advantage of
our new path shape notion is the omission of distance
measurements, so essentially having a compass avail-
able suffices for self-localization.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Previous result [7]: Path shape (green) and its partial matches (longer than 200m) in the Taunus area for a
fuzzy comparison model. Blue dots indicate path origins. Only one full match exists determining the current position.

2 Directional Path Shapes (DPS) via Inflection
Points

When travelling along a path π one can use an elec-
tronic compass to record the direction in which one
is heading. When recorded continuously, this corre-
sponds to a continuous function φ : [0, 1] → C map-
ping each point along the path (parametrized over
[0, 1]) to an angle of direction (represented as an an-
gle/point on the unit circle C). So assume the same
path π is travelled along by two vehicles at different
speeds resulting in respective functions φ1 and φ2.
Due to the different speeds aka parametrizations of
the path, the two functions look different – in what
respect could they be considered equal, though? One
could imagine that the sequence of local minima or
maxima of these functions is characteristic and the
same for both functions φ1 and φ2. This is only
makes sense, though, if we had mappings of the form
φ : [0, 1]→ [0, 2π], that is to an ordered space, which
is not really the case here since the space C is circu-
lar and has no notion of smaller or larger. A typical
path includes both curves or turns to the left as well
as curves or turns to the right, so a possible charac-
terization is to consider the sequence of angles where
there is a change from increasing angles to decreasing
angles. In differential calculus this is called inflec-
tion point and characterized by the second derivative
changing sign; in our case, the functions φ need not
be differentiable, we will still call the respective an-
gle inflection point (IP). It is clear that this sequence
of inflection points is the same for φ1 as for φ2. If
the ’boundary’ between 0 and 2π is never crossed,
these inflection points in fact correspond to local min-
ima/maxima in the respective function which maps to
[0, 2π]. See Figure 2 for an illustration of this concept.

So from now on we will represent a path by the
ordered sequence of inflection points of φ which is
invariant under different parametrizations of the re-
spective path. This sequence of inflection points we
call its directional path shape (DPS).

3 Self-Localization via Matching Directional Path
Shapes

Assuming we move on shortest (according to some
known metric) in the network, the basic idea of our
self-localization approach is as follows: In a prepro-
cessing step we extract all shortest paths in the net-
work, construct their directional path shapes (i.e. the
sequence of inflection points), and store them in a
suitable data structure. Now when driving around in
the network we acquire a real-time DPS via reading
out the built-in electronic compass of our smartphone.
If there is a unique path shape in our database match-
ing the just acquired DPS (having identical inflection
points), we have determined our current location (up
to the path segment between two inflection points).
There are some challenges to make this idea practi-
cal, though:

• Acquiring a DPS real-time via a compass only
rarely leads to exactly the same sequence of in-
flection points as the ground truth derived from
the map; measuring errors or unsteady steering
induce additional or differing inflection points.

• It is not feasible to compute all shortest paths
even in a moderately sized network, let alone
store their respective DPSs and query them.

3.1 Smoothing of Directional Path Shapes

Naturally, no sensor is flawless and the measured an-
gles are perturbed by all kind of external factors.
To take care of these fluctuations, we apply a line
smoothing technique. For that purpose we convert the
sequence of inflection points into a polyline by start-
ing at (0, 0) in a two-dimensional coordinate system,
and then elongate the line by a straight segment in the
direction of the angle corresponding to the first inflec-
tion point. We always use unit length for each straight
segment. Then we apply the Douglas-Peucker algo-
rithm [4] to this polyline which reduces the number
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Figure 2: Left: Path with induced inflection points in blue; right turns in green, left turns in purple. Center and right:
Two visualizations of the time-to-direction function φ. induced by traversing this path. On the right, inflection points
correspond to local extrema.

of points but faithfully preserves the overall shape at
the same time. Applying this smoothing to the DPS
measured by the compass increases stability against
measuring errors or unsteady steering.

3.2 A fault-tolerant Query Structure for DPSs

To accomplish fast localization queries, we follow the
idea presented in [7] and transfer the problem of find-
ing matching DPSs to a pattern search problem in
texts. So the encoding of the current trajectory is
regarded as a concatenated string over the alphabet
{1, 2, . . . , 360}. The text describing the network con-
sists naively of all encodings of possible (shortest)
paths in the map. A generalized suffix tree (GST)
[9] requires only linear space and allows for efficient
substring search by following a single path in the GST.

Unfortunately, constructing a GST for the DPSs of
all Θ(n2) shortest paths in the network is not feasible,
hence we restrict to storing in the GST only the DPSs
of all minimal shortest paths which have a unique DPS
representation. Fault-tolerance at query time can be
achieved by not only following a single path down
the GST but all paths as long as the inflection point
angles are within a certain error bound (in fact, in this
case, we have to construct the GST for all minimal
shortest paths with unique DPS representation even
under fault tolerant comparisons).

4 Experimental Results

To show the practicability of our approach, we im-
plemented the described algorithms and methods in
C++ and tested them on several input networks.
Timings were taken on a single core of an AMD
Opteron 6172 with 2.1GHz Table 1 shows the char-
acteristics of two of our benchmark networks, MA
- Massachusetts and SG - Southern Germany, both
extracted from OpenStreetMap data. We observe
that the percentage of inflection points on an aver-
age shortest path is rather high, in fact about 50%
(on the unsmoothed graph data).

Table 1: Characteristics of the used test graphs. Av-
erages over 1000 random shortest paths (SPs).

MA SG

# nodes 294,345 5,588,146
# edges 731,874 11,711,088
avg. path length 120.4km 173.7km
avg. # IPs on SP 209 1373
avg. % IPs on SP 51.2 48.6

Table 2: Unique prefix length (in meters) dependent
on the minimum number of inflection points (IPs) for
exact queries, and with an angle tolerance of t = 5.
Values are averaged over 1000 random shortest paths.

MA SG MA SG
exact t = 5

0 IP 28,430 91,941 31,931 94,146
1 IP 21,388 45,083 31,293 81,934
2 IP 9,085 31,757 23,445 62,309
5 IP 114 1,596 8,853 4,998
10 IP 2 4 175 3

4.1 Characterizability of Street Networks

Our approach can only work if the inflection point
representation is sufficiently differentiating paths in
the network. So we conducted the following experi-
ment: for a random shortest path π we searched for
another path π′ having the longest common prefix in
its DPS representation with π. In Table 2 the average
prefix lengths can be found, grouped by the minimum
number of inflection points we demand the match to
contain. If we set this number to zero, the longest
match simply is the longest shortest path in the net-
work with no encoding, completely independent of the
reference path. Increasing the minimum number of in-
flection points, the prefix sizes decrease dramatically.
Already using 5 IPs, the IPR becomes unique quite
early, even when using an angle tolerance of t = 5 de-
grees between IPs. The first 10 IPs are rarely matched
by any other path in the map, even for Southern Ger-
many, this number is less than one percent of the total
number of IPs on the path.
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MA SG

exact naive 17.1836s 245.6335s
new 0.0022s 0.0332s

speed-up 7810s 7398s

t=5 naive 19.0172s 261.1443s
new 0.0038s 0.0458s

speed-up 5004 5701

Table 3: Query times for self-localization
averaged over 1000 random queries.

4.2 GST Construction and Querying

We constructed GSTs for all minimal paths with
unique IPR, both under the exact as well as the
imprecision-tolerant comparison model. For the road
network of Southern Germany, the resulting GST can
be employed to pinpoint one’s location if the respec-
tive DSP has at least 17 inflection points in the exact
model, 33 inflection points in case of the imprecision-
tolerant model. Construction of the GSTs takes some
time – about 2 days for the exact, and 4 days for
the imprecision-tolerant model – and results in a data
structure of about 4GB size which can still be stored
on a mobile device.

With the GST we can perform self-localization
queries several orders of magnitudes faster than the
naive method which trys to realize a given DPS from
every single node of the network, see Table 3 for
the results. Even under a fault-tolerant comparison
model and the large road network of Southern Ger-
many, one can pinpoint one’s own location in a frac-
tion of a second.

4.3 Real-World Data Collection and Experiments

While the queries in Table 3 were randomly generated
from the underlying road network, we also collected
real compass data by bicycle with our Android com-
pass app on a Nexus 4 over a period of a month. Cy-
cling along our test route 20 times at quite different
speeds, we could match 13 of the resulting DSPs cor-
rectly to the network using an angle tolerance of 5◦.
For the remaining ones, at least one inflection point
differed more from the ground truth, the maximum
was at 22◦. These are preliminary results, the hard-
est challenge currently is still getting a reliable com-
pass reading from the smartphone. The current An-
droid API provides five different methods to get such
a reading1: via a virtual orientation sensor (depre-
cated), magnetometer and accelerometer to rotation,
low pass, rotation sensor, AHRS. Some of these meth-
ods require tuning parameters which we are still in
the process of investigating. So there is a good chance
that DPS can eventually be employed as a stand-alone
method for precise self-localization once we can get

1http://developer.android.com/guide/topics/sensors/

sensors_overview.html

sufficently good sensor readings.

5 Conclusion

We have presented a novel way to characterize paths
in a road network solely based on directional infor-
mation. By examining real-world road-networks we
could show experimentally that this characterization
is expressive enough to distinguish shortest paths by
a relatively short prefix. Based on this observation we
developed an efficient data structure which quickly re-
trieves matching paths in a road network for a given
path shape query and hence determines one’s own lo-
cation. Possible future work includes the considera-
tion of more paths than just shortest/quickest. Our
new method might also be interesting for other map
matching applications [5, 8]. Like [7] our approach
works better for European-style road networks, the
many grid-type subnetworks e.g. in the U.S. lead
to considerably longer path lengs to achieve unique
IPRs.
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A Method for Fitting Real World Tessellations with Voronoi Diagrams

Supanut Chaidee∗ Kokichi Sugihara∗

Abstract

There are many phenomena that generate polygonal
tessellations on surfaces in 3D space. In this study, we
propose a framework for finding the spherical Voronoi
diagram that best fits a given photograph of a tessel-
lation on a curved surface. A new distance is intro-
duced in order to define the Voronoi diagram that is
suitable for this purpose. Finally, this is reduced to
an optimization problem, and numerical results are
shown.

1 Introduction

In the real world, there are many phenomena that
generate polygonal tessellations, for example, the pat-
terns made by animal territories or the surface of
fruits. We are interested in checking whether a given
tessellation belongs to a Voronoi diagram (or whether
it is a Dirichlet tessellation).

Several criteria have been proposed for evaluating
the difference between a particular tessellation and a
Voronoi diagram. With a planar polygonal tessella-
tion, Honda [2, 3] gave the framework for approximat-
ing the Voronoi generators from a given tessellation
and defined the deviation between the given tessella-
tion and the Voronoi diagram. In [6], the deviation
between two tessellations, said the discrepancy, is de-
fined in a different way from [2, 3], and the problem is
reduced to the optimization problem for adjusting po-
sitions of the Voronoi generators to obtain the small-
est discrepancy. Also, The tessellation fitting by con-
sidering the equation system was introduced in [1].
Khiripet, et. al. [4] also introduced the tools for ana-
lyzing the Voronoi diagram from a given photo. How-
ever, they are all for a 2D Voronoi diagram, whereas
we are interested in tessellations on curved surfaces in
3D space.

In addition, many tessellations in the real world ap-
pear in 3D space. Some criteria are also studied in 3D
space, for example, the method for fitting the 3D La-
guerre Voronoi tessellation to foam structure in [5].
Fitting a given tessellation to the Voronoi diagram
and evaluating the difference with respect to the gen-
erators of the given tessellation will be useful for con-
structing mathematical models of polygonal patterns
found in nature.

∗Graduate School of Advanced Mathematical Sciences, Meiji
University, Japan, {schaidee, kokichis}@meiji.ac.jp

One example of a polygonal tessellation found in
nature is jackfruit (Artocarpus heterophyllus), a mul-
tiple fruit that is found in various tropical locations.
Photos of a jackfruit are shown in Figure 1. The sur-
face of a jackfruit is covered by a complicated 3D mi-
crostructure, which, when viewed along a line perpen-
dicular to the surface, forms a polygon-like tessella-
tion in which each cell contains a blunt spike. Each
tip of each spike is located on a flower of an inflores-
cence. Therefore, it could be said that the tip of each
spike is the generator of polygonal tessellation.

Figure 1: (left) A jackfruit; (right) the skin of a jack-
fruit

In this study, we will assume that the pattern seen
in the skin of a jackfruit can be approximated by a
Voronoi diagram on a sphere. We provide a frame-
work for using a photograph of a jackfruit to evaluate
the difference between this pattern and a spherical
Voronoi diagram. Because it is not appropriate to
compare such a photo with a Voronoi diagram on a
plane, we introduce a Voronoi diagram that reflects
3D structures on a plane. We then formulate an opti-
mization problem to determine the best sizes for the
sphere and the spike heights. Finally, we confirm the
validity of our method by numerical results, using ar-
tificial and real tessellation patterns.

2 Problem Formulation

Our goal is to compare a given tessellation on a curved
surface (including the centers of the tessellation cells)
with the Voronoi diagram with respect to those cen-
ters on that surface. In particular, in this study, we
will consider the pattern made by the skin of a jack-
fruit.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2.1 Modeling assumptions

For simplicity, we assume that locally, a jackfruit can
be considered to be a sphere of radius R. The exact
shape of a jackfruit is only approximately ellipsoidal,
but we consider a relatively small subregion of the
surface, in which this approximation is adequate. We
also assume that the jackfruit has spikes of a uniform
height h, that is, the tips of the spikes (the spike-dots)
are on a sphere of radius R+ h.

We also assume that the photo of the jackfruit is
an orthogonal projection of the sphere onto the plane
of the photo (the XZ-plane). The center of the photo
is assumed to be at the center of the camera lens and
the origin of the XZ-plane.

Further, we consider the spike-dots to be the gener-
ators of the Voronoi diagram on the sphere. We define
the spike-dots rigorously, as follows.

The spike-dot si is the dot located at the tip of
spike qi. The set of spike-dots is denoted as B =
{s1, ..., sn}, where n is the number of spike-dots shown
in the photo.

Starting from the photo, we would like to generate
a tessellation that can be considered to be the pro-
jection of the pattern of the jackfruit skin onto the
XZ-plane. The tessellation T that is extracted from
a photo of a jackfruit is called a jackfruit tessel-
lation (hereinafter, for simplicity, tessellation). We
assume that T is a convex embedding of a planar 3-
regular straight graph containing the set of spike-dots
B = {s1, ..., sn}.

From consideration of the physical reality, there ex-
ists a single spike-dot in each tessellation cell, but
some spike-dots are not shown in the photo, because
they are outside the frame.

2.2 Comparison of the difference in the two di-
mensions

Let C be a cell in a tessellation T . C is said to be
a spike-dot cell if C contains a spike-dot. Otherwise,
we call it a non-spike-dot cell. In order to compare
two tessellations fairly, we construct tessellations Tg
and Vg such that each tessellation cell of Tg and Vg
is completely surrounded by spike-dot cells in the tes-
sellations T and V , respectively.

Now, we have two tessellations with the same spike-
dots. For each pair of cells corresponding to the same
spike-dot, the intersection (overlapping area) is a con-
vex polygon containing the spike-dot. The difference
in area between tessellation Tg and the sum of the
overlapping areas is denoted DT . We denote by DV

the difference in area between the Voronoi diagram V
and the sum of overlapping areas. Let AT and AV
be the areas of tessellation Tg and the Voronoi dia-
gram Vg, respectively. The difference between these
two tessellations, denoted ∆T,V , can be determined

as the ratio of the difference area to the overall area:

∆T,V =

(
DT +DV

2

)
/

(
AT +AV

2

)
=
DT +DV

AT +AV
.

(1)
We note that DT , DV and AT , AV are not much dif-
ferent.

The value ∆T,V indicates the extent of the dif-
ference between the jackfruit skin pattern and the
Voronoi diagram. This ratio is called discrepancy
hereafter.

2.3 Framework for projecting a Voronoi diagram
on a sphere onto a plane

In order to evaluate the difference between the jack-
fruit tessellation and the Voronoi diagram, we must
first construct the Voronoi diagram on the sphere.
However, we do not know the size of the sphere.

We initially assume values R and h for the ra-
dius and the spike height, respectively. We project
each spike-dot si = (xi, zi) on the photo plane onto
the sphere. Note that each spike-dot is derived
from the top of a jackfruit spike, which is located
on the top of a sphere of radius R + h. Hence,
the coordinates of the tip of spike are si(R + h) =
(xi,

√
(R+ h)2 − (x2i + z2i ), zi). We project this point

onto a sphere of radius R, in which the center of the
projection is at the center of the sphere. Thus, the
Voronoi generators are obtained as si(R) = (x′i, y

′
i, z
′
i),

which are located on the sphere of radius R. Finally,
we construct the Voronoi diagram with respect to the
geodesic distance, VS , on this sphere.

We project the vertices of VS onto the XZ-plane.
We approximate the Voronoi edges projected to a
plane by straight line segments to obtain a convex
tessellation V .

With the tessellation T extracted from the photo
and the projected Voronoi diagram V , we obtain Tg
and Vg, which consist of spike-dot cells. We are now
ready to compare the two tessellations.

3 A New Distance Corresponding to the Voronoi
Diagram on the Sphere with Spikes

We have already provided the framework for com-
paring a given tessellation that is extracted from the
photo, and the Voronoi diagram on a sphere for the
spike-dots. Our process begins with the coordinates
on the photo plane (the XZ-plane). In this section,
we define a new distance on the plane that corre-
sponds to the distance on the sphere with spikes.

Let P ′(x1, z1) be a spike point, and let Q′(x2, z2) be
any point on the photo plane. Assume that P ′ comes
from spike point P on the sphere with radius R + h,
and Q′ comes from general point Q on the sphere with
radius R.
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Based on these assumptions, we are able to spec-
ify the y-coordinates of the spike points on the
sphere: y1 =

√
(R+ h)2 − (x21 + z21) and y2 =√

R2 − (x22 + z22). Therefore, P and Q are represented

as P = (x1,
√

(R+ h)2 − (x21 + z21), z1) and Q =

(x2,
√
R2 − (x22 + z22), z2). Let P ′′ be the point of in-

tersection of the line OP and the sphere with radius
R, where O is the origin of the sphere. We can obtain
the distance on the sphere by considering P and Q as
vectors. Note that the circular arc length from P ′′ to
Q is dgc = R · θ, where R is the sphere radius, and θ
is the angle between P and Q, measured at the center
of the plane.

In particular, θ = arccos
(

P·Q
|P||Q|

)
, where |P| = R+

h and |Q| = R.
Therefore, the distance between P ′ and Q′ on the

plane is

dplane(P
′, Q′) = R · arccos

(
P ·Q

R(R+ h)

)
. (2)

This is the distance between a Voronoi generator cor-
responding to a spike-dot and an arbitrary point on
the plane. Note that this distance does not satisfy
the metric axiom, but we use the term ’distance’ or
’metric’ for convenience. With this distance, we are
able to draw the Voronoi diagram on the XZ-plane.

From the distance defined by (2) and the frame-
work presented in the previous sections, the following
theorem is obtained directly.

Theorem 1 The Voronoi diagram on the sphere with
radius R generated by spikes on the sphere with radius
R + h is equivalent to the Voronoi diagram on the
plane with respect to the distance defined by (2).

4 Stability of Tessellation Fitting

If the Voronoi diagram on a plane with respect to the
distance (2) is given, we can define the discrepancy.
However, we do not know R, h, or the center of the
sphere. Therefore, the discrepancy is a function of
these parameters, and optimization is required to find
the best-fit values.

4.1 Discrepancy function

For a given tessellation T , we generate a Voronoi dia-
gram on the plane V with respect to the distance (2).
With these two tessellations, we can compute the dis-
crepancy defined in Section 2.3. We observe that the
variables R, h, and the center of the sphere affect the
discrepancy.

We define D as a discrepancy function that de-
pends on the center of the sphere projected onto the
plane (x, z), the sphere radius R, and the spike height
h, which is the ratio ∆T,V shown in the equation

(1); that is, the discrepancy function is denoted by
D(x, z,R, h). In order to fit a given tessellation T
with a Voronoi diagram V , optimization is used to find
the appropriate x, z,R, h that minimizesD(x, z,R, h).
However, it is complicated to express the discrepancy
function D explicitly.

In order to fit a given tessellation with the Voronoi
diagram on the sphere, the framework is written as
the following algorithm.

Algorithm: Spherical Voronoi Fitting
Input: B - set of spike dots on the xz-plane, T -
jackfruit tessellation corresponding to B, initial x =
(x, z,R, h)
Output: x, z,R, h which minimize D(x, z,R, h)
Definition: function D(x, z,R, h)

Fix T as a given tessellation;
for i = 1 to |B|;

Project si to si(R+ h);
Project si(R+ h) to si(R);

end for;
Construct VS with respect to ∪{si(R)};
Project VS to V ;
Intersect T and V cell by cell;
Compute DT , DV , AT , AV ,∆T,V ;
D(x, z,R, h)← ∆T,V ;

end Definition
Procedure:

1. Calculate D(x);

2. Search for x′ = (x′, z′, R′, h′) such that
D(x) > D(x′) (by the method described later);

3. if such x′ is found then
x← x′; D(x)← D(x′) and go to step 2;

else
report x and D(x);

end if ;

end Procedure

4.2 Experiments and numerical results

We performed the experiments using an artificially
generated Voronoi diagram with respect to known pa-
rameters, with R = 18 and h = 0.4, and where the
center of the sphere was at (−0.2,−0.2). In our exper-
iments, this Voronoi tessellation will be assumed as a
given jackfruit tessellation. We then generated a new
Voronoi diagram V , where the center of the sphere
was at (−0.2,−0.2), and the parameters R and h var-
ied. Now, the optimization problem can be considered
as two independent variables, R and h. Note that the
minimum of D is equal to 0 at the point (18, 0.4).

In the minimization of D, observations of the be-
havior of the discrepancy function led us to use a
circular search, which is the search for the location
of (R, h) minimizing D(x, z,R, h) when x, z are fixed.
We began a circular search at the initial point (R0, h0)
with discrepancy Mi. We then computed the discrep-
ancies of 36 points on the circle centered at (R0, h0)
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and with radius α and lying in the Rh-plane. These
points were arranged counterclockwise in a sequence,
and denoted C = {p1, p2, ..., p36}. Among the discrep-
ancies of these 36 points, we chose the subsequence
Ck = {pj , pj+1, pj+2} of C satisfying the property that
D(pj) ≥ D(pj+1) and D(pj+1) ≤ D(pj+2). For each
subsequence, we used a binary search to divide the
arc between pj and pj+2 into five subdivisions. We
then reevaluated the subsequences and conducted an-
other binary search to obtain the minimum among the
subsequence Ck. We then found the minimum discrep-
ancy among all subsequences of C, denoted Mi+1. If
Mi ≤Mi+1, we decreased α to α/2 and reiterated the
previous steps. Otherwise, we moved to that point
and continued the search. The search was stopped
when the radius had been decreased by a certain fixed
factor.

This numerical experiment was implemented on
Wolfram Mathematicar10. The initial values were
chosen from 8 points in the different direction around
the correct answer. Starting from all the initial
values (16.0, 0.3), (16.0, 0.4), (16.0, 0.8), (18.0, 0.3),
(18.0, 0.5), (20.0, 0.3), (20.0, 0.4), (20.0, 0.5), R and
h converge to the answer R = 18.00 and h = 0.4000
averagely, where the standard deviation of R and h
are 5.734× 10−3 and 4.684× 10−7, respectively. The
plot of the discrepancy values of some initial value is
shown in the Figure 2.

5 10 15

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Figure 2: The change of the discrepancy function val-
ues from the initial value (16, 0.3)

From the results of experiments with artificially
given tessellations, we conclude that we can acquire
the corrected parameters from various initial values
by using a circular search strategy.

5 Concluding Remarks

We proposed a framework for finding a spherical
Voronoi diagram that can be fitted to the tessellation
acquired from the photo of a tessellation on an ap-
proximately spherical surface covered by spikes. We
also introduced a new distance for a Voronoi dia-
gram on a sphere with spikes. Finally, we provided
a method for optimizing the parameters in order to

obtain the best-fit Voronoi diagram.
We can use the proposed method to verify that a

given surface with generators can be considered to
be a Voronoi diagram. However, our framework can
be applied for fitting the polygon-like tessellation on
the surface which is a convex surface covered by al-
most uniformly spikes. In practical, we have already
done the experiments with the real data from a taken
photo by using the proposed framework. The overall
idea with the real data is shown in the Figure 3. Our
framework will be useful for constructing mathemat-
ical models of the formation of polygonal patterns in
various natural phenomena.

Figure 3: (left) A jackfruit photo with selected area;
(middle) the extracted tessellation; (right) the differ-
ence of the given tessellation and the best-fit Voronoi
diagram
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Exact Minkowski Sums of Polygons With Holes

Alon Baram∗ Efi Fogel∗ Dan Halperin∗ Michael Hemmer† Sebastian Morr†

Abstract

We present an efficient algorithm that computes the
Minkowski sum of two polygons, which may have
holes. The new algorithm is based on the convolution
approach. Its efficiency stems in part from a property
for Minkowski sums of polygons with holes, which we
prove to hold in any dimension. Given two polygons
with holes, we can fill in all the holes of one polygon,
transforming it into a simple polygon, and still obtain
exactly the same Minkowski sum. Obliterating holes
in the input summands speeds up the computation of
Minkowski sums.

We introduce a robust implementation of the new
algorithm, which follows the Exact Geometric Com-
putation paradigm and thus guarantees exact results.
We also present an empirical comparison of the per-
formance of Minkowski sum constructions, where we
show that the implementation of the new algorithm
exhibits better performance than several other imple-
mentations in many cases. In particular, we compared
the implementation of the new algorithm, an imple-
mentation of the standard convolution algorithm, and
an implementation of the decomposition approach us-
ing various convex decomposition methods.

The software has been developed as an extension of
the 2D Minkowski Sums package of Cgal (Compu-
tational Geometry Algorithms Library). Additional
information is available at http://acg.cs.tau.ac.
il/projects/rc.

1 Introduction

The Minkowski sum of two sets P and Q is defined
as P ⊕ Q = {p+ q | p ∈ P, q ∈ Q}. In this paper we
focus on the computation of Minkowski sums of gen-
eral polygons in the plane, that is, polygons that may
have holes. However, some of our results also apply
to higher dimensions. Minkowski sums are ubiqui-
tous in many fields, including robot motion planning,
assembly planning, and computer aided design.
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Figure 1: The convolution of a convex and a non-convex
polygon; winding numbers are indicated in brackets; dotted
edges are left out for the reduced convolution.

1.1 Terms, Definition, and Related Work

During the last four decades many algorithms were in-
troduced to compute the Minkowski sum of polygons
or polyhedra. For exact two-dimensional solutions
see, e.g., [4]. For approximate solutions see, e.g., [7]
and [9]. For exact and approximate three-dimensional
solutions see, e.g., [6], [10], [11], and [15].

Computing the Minkowski sum of two convex poly-
gons is rather easy using an operation similar to merg-
ing two sorted lists of numbers, as P ⊕Q is a convex
polygon bounded by copies of the edges of P and Q
ordered according to their slope. If the polygons are
not convex, it is possible to use one of the two follow-
ing general approaches:

Decomposition Algorithms that follow the decom-
position approach decompose P and Q into two sets
of convex sub-polygons. Then, they compute the
pairwise sums using the simple procedure described
above. Finally, they compute the union of the pair-
wise sums. This approach was first proposed by
Lozano-Pérez [12]. The performance of this ap-
proach heavily depends on the method that com-
putes the convex decomposition of the input poly-
gons. Flato et al. [1] described an implementation
of the first exact and robust version of the decom-
position approach, which handles degeneracies. They
also tried different decomposition methods, but none
of them though handled polygon with holes.

Convolution Let VP = (p0, . . . , pm−1) and VQ =
(q0, . . . , qn−1) denote the vertices of the input poly-
gons P and Q, respectively. Assume that their
boundaries wind in a counterclockwise order around

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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their interiors. The convolution of these two poly-
gons, denoted P ∗ Q, is a collection of line segments
of the form1 [pi + qj , pi+1 + qj ], when the vector−−−−→pipi+1 lies counterclockwise in between −−−−→qj−1qj and−−−−→qjqj+1 and, symmetrically, of segments of the form
[pi + qj , pi + qj+1], when the vector −−−−→qjqj+1 lies coun-
terclockwise in between −−−−→pi−1pi and −−−−→pipi+1.

According to the Convolution Theorem stated in
1983 by Guibas et al. [5], the convolution is a super-
set of the Minkowski sum boundary. The segments
of the convolution form a number of closed (possibly
self-intersecting) polygonal curves called convolution
cycles. On this basis, Wein [16] implemented the stan-
dard convolution algorithms for simple polygons. He
computed the winding number2 for each face in the
arrangement induced by the convolution cycles and
used it to determine whether the face as part of the
Minkowski sum or not; see Figure 1. Wein’s exact
implementation is available in Cgal [14].

Kaul et al. [8] observed that a segment [pi +
qj , pi+1 + qj ] (resp. [pi + qj , pi + qj+1]) cannot possi-
bly contribute to the boundary of the Minkowski sum
if qj (resp. pj) is a reflex vertex (see dotted edges in
Figure 1). The remaining subset of convolution seg-
ments, the reduced convolution, is still a superset of
the Minkowski sum boundary but the idea of winding
numbers can not be applied as there are no closed cy-
cles anymore. Instead, Behar and Lien [2], first iden-
tify faces in the arrangement of the reduced convolu-
tion that may represent holes (based on proper orien-
tation of all boundary edges of the face). Thereafter,
they check whether such a face is indeed a proper hole
by selecting a point x inside the face and performing
a collision detection of P and x ⊕ −Q. Their imple-
mentation exhibits faster running time than Wein’s
method, but may not be able to handle some degen-
erate cases: although they are using advanced multi-
precision arithmetic, the detection of some degenera-
cies requires an exact approach. The method was also
extended to three dimensions [11].

Milenkovic and Sacks [13] defined the Mono-
tonic Convolution, which is another superset of the
Minkowski sum boundary. They show that this set
defines cycles and induces winding numbers, which
are positive only in the interior of the Minkowski sum.

1.2 Our Results

We present an efficient algorithm that computes the
Minkowski sum of two polygons, which may have
holes. The new algorithm is a variant of the algorithm
proposed by Behar and Lien [2], which computes the

1Addition of vertex indices is carried out modulo n (respec-
tively m) for P (respectively Q).

2Informally speaking, the winding number of a point p ∈
R2 with respect to some planar curve γ is an integer number
counting how many times does γ wind in a counterclockwise
orientation around p.

reduced convolution set. In our new algorithm, the
initial set of filters proposed in [2] is enhanced by the
removal of complete holes in the input, which reduces
the size of the reduced convolution set even further.
This enhancement is backed up by a simple theorem,
the proof of which is also presented; see Section 2.
Moreover, we show that at least one of the input poly-
gons can always be made simple (before applying the
convolution). This latter result is applicable to any
dimension and independent of the used approach.

We introduce an implementation of the new algo-
rithm. We also introduce implementations of two
new convex decomposition methods that handle poly-
gons with holes as input—one is based on vertical de-
composition and the other is based on triangulation.
These two methods can be directly applied to com-
pute the Minkowski sum of polygons with holes via
decomposition. All our implementations are robust
and handle degenerated cases.

In addition, we present an empirical comparison of
all the implementations above and existing implemen-
tations; see Section 4. We show that the implementa-
tion of our new algorithm exhibits better performance
than all other implementations in many cases.

The software has been developed as part of the
2D Minkowski Sums package of the Computational
Geometry Algorithms Library (Cgal) [14], and as
such, it is written in C++ and rigorously adheres
to the generic-programming paradigm and the EGC
paradigm.

2 Filtering Out Holes

The fundamental observation of the convolution the-
orem is that only points on the boundary of P and
Q can contribute to the boundary of P ⊕Q. Specifi-
cally, the set of segments in the convolution P ∗Q is
a superset of the segments of the boundary of P ⊕Q.

The idea behind the reduced convolution method is
to filter out segments of P ∗Q that can not contribute
to the boundary of P ⊕Q using a local criterion; see
Section 1.1. In this section we introduce a global crite-
rion. The following theorem shows that we can ignore
all segments in P ∗Q that are induced by a hole if it is
relatively small compared to the other polygon, mean-
ing that the hole is completely irrelevant for P ⊕ Q.
In fact, it implies that the hole can be removed (that
is, filled up) before the main computation starts, in-
dependently of the used approach; see also Figure 2
for an intuition.

Theorem 1 Let H be the interior of a hole in poly-
gon P . If there is a path γ contained in polygon Q
that does not fit under any translation in −H, then
H is irrelevant for the computation of P ⊕Q.

Proof. Consider a point p ∈ ∂H ⊂ P and a point
q ∈ ∂Q and assume for contradiction that p⊕ q is on
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P Q

γ

∂H ⊕ γ
H

P ⊕Q

Figure 2: A small hole H is irrelevant for the computation
of P ⊕Q as adding ∂H and γ ⊂ Q fills up any potential hole
in P ⊕Q related to H.

the boundary of P ⊕Q. First, observe that p⊕q must
be part of the boundary of a holeH of P⊕Q as ∂H⊕q
forms a closed cycle. For any point x ∈ H 6⊂ P ⊕Q it
must hold that x ∈ H⊕y ∀y ∈ Q. Specifically, it must
hold ∀y ∈ γ ⊂ Q. This is equivalent to y ∈ (x⊕−H)
for all y ∈ γ, stating that γ fits into −H under some
translation, a contradiction. �

Corollary 2 If the closed axis-aligned bounding box
BQ of Q does not fit under any translation in the open
axis-aligned bounding box BH of a hole H in P , then
H does not induce a hole in P ⊕Q.

Proof. W. l. o. g. assume that BQ does not fit into
BH with respect to the x-direction. Consider the
two extreme points of Q in that direction and con-
nect them by a path γ, which obviously does not fit
into −H, as it does not fit into BH . �

Note that if BQ does not fit in the open axis-aligned
bounding box BP of P , it cannot fit in the bounding
box of any hole of Q, implying that all holes of Q can
be ignored. Since for any two bounding boxes either
BQ 6⊂ BP or BP 6⊂ BQ holds, we need to consider the
holes of at most one polygon.

Consequently, we can remove all holes whose
bounding boxes are, in x- or y-direction, smaller than,
or as large as, the bounding box of the other poly-
gon, as an initial phase of all methods. With fewer
holes, convex decomposition results in fewer pieces.
Moreover, when all holes of a polygon become irrele-
vant, one can choose a decomposition method that
handles only simple polygons instead of a decom-
position method that handles polygons with holes,
which is typically more costly. As for the convolu-
tion approach, the intermediate arrangements become
smaller, speeding up the algorithm.

3 Reduced Convolution

We compute the reduced convolution set of segments
filtering out features that cannot possibly contribute
to the boundary of the Minkowski sum (see Sec-
tion 1.1) and in particular complete holes (see Sec-
tion 2). Then, we construct the arrangement in-

duced by the reduced convolution set. Finally, we
traverse the arrangement and extract the boundary of
the Minkowski sum. We apply two different filters to
identify valid holes in the Minkowski sum: (i) We ig-
nore any face in the arrangement the outer boundary
of which forms a cycle that is not properly oriented,
as suggested in [2]. (ii) We ignore any face f , such
that (−P ⊕ x) and Q collide, where x ∈ f is a sam-
pled point inside f , as suggested in [8]. We use axis-
aligned bounding box trees to expedite the collision
tests. After applying these two filters, only segments
that constitute the Minkowski sum boundary remain.

In most cases, the reduced convolution method is
faster than the full convolution method, as the in-
duced arrangement has typically fewer cells. How-
ever, in degenerated cases with many holes in the
Minkowski sum, the full convolution method is prefer-
able over the reduced convolution method, as it avoids
the costly collision-detection tests.

4 Experiments

We have conducted our experiments on families of
randomly generated general and simple polygons from
AGPLib [3]; examples are depicted in Figure 3a
and 3b, respectively. All experiments were run on
an Intel Core 2 Duo P9600 CPU clocked at 2.53 GHz
with 4 GB of RAM. For each instance size the figures
show an average over 10 runs on different input.

(a) (b)

Figure 3: Randomly generated polygons: (a) simple, and
(b) general.

First, we compared the running time of the imple-
mentations of all methods for simple polygons avail-
able in Cgal (for details, see [4, Section 9.1.2]), the
new implementations, and Behar and Lien’s imple-
mentation; see Figure 4a. Data points for instances
not shown could not be computed due to memory
limitations reached by the decomposition methods.
The reduced convolution method consumed about ten
times less time than the full convolution method for
large instances, whereas the decomposition methods
were the fastest for instances larger than 150 vertices.

Secondly, we compared the running time of the im-
plementations of the three new methods (i.e., RC, TD,
and VD) and Behar and Lien’s implementation on in-
stances of general polygons with n vertices and n/10
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holes; see Figure 4b. For each pair of polygons, one
was scaled down by a factor of 1000, to avoid the ef-
fect of the hole filter in this experiment. Instances
with more than 1000 vertices could not be processed
by the decomposition methods due to memory limita-
tions. For instances with more than 2000 vertices, the
running time of the reduced convolution method ex-
ceeded 30 minutes. For all successful executions, the
reduced convolution method consumed significantly
less time than the two decomposition methods. Behar
and Lien’s implementation generally performs worse
than our reduced convolution method.

Thirdly, we compared the running time of the im-
plementations above fed with a square of varying size
(see the horizontal axis in Figure 4c and 4d) and
with randomly generated polygons having 2000 ver-
tices and 200 holes. While the running time of the
reduced convolution method increased as the square
grew due to an increase of the complexity of the inter-
mediate arrangement, Behar and Lien’s implementa-
tion exhibited constant running time, as it performs
pairwise intersection testing. When applying the hole
filter to our methods, the reduced convolution method
consumed less time than all other methods. The two
diagrams clearly show the impact of filtering holes.
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(a) MS of simple polygons.
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(b) MS of general polygons.
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(c) MS of general polygon
and growing square (x-axis)—
without hole filter
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(d) MS of general polygon and
growing square (x-axis)—with
hole filter

Figure 4: Time in seconds for different methods to com-
pute Minkowski sums for two polygons. Legend: (RC) reduced
convolution; (FC) full convolution; (TD) constrained triangula-
tion decomposition; (VD) vertical decomposition; (SD) small-side
angle-bisector decomposition; (OD) optimal convex decomposi-
tion; (HD) Hertel-Mehlhorn decomposition; (GD) Greene decom-
position; (BL) Behar and Lien’s reduced convolution.

References

[1] P. K. Agarwal, E. Flato, and D. Halperin. Polygon
decomposition for efficient construction of Minkowski
sums. Comput. Geom. Theory Appl., 21:39–61, 2002.

[2] E. Behar and J.-M. Lien. Fast and robust 2D
Minkowski sum using reduced convolution. In Proc.
IEEE Conf. on Intelligent Robots and Systems, 2011.

[3] M. C. Couto, P. J. de Rezende, and C. C.
de Souza. Instances for the Art Gallery
Problem, 2009. http://www.ic.unicamp.br/∼cid/
Problem-instances/Art-Gallery.

[4] E. Fogel, D. Halperin, and R. Wein. Cgal Arrange-
ments and Their Applications, A Step by Step Guide.
Springer, Berlin Heidelberg, Germany, 2012.

[5] L. J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic
framework for computational geometry. In Proc. 24th
Annu. IEEE Symp. Found. Comput. Sci., pp. 100–
111, 1983.

[6] P. Hachenberger. Exact Minkowksi sums of polyhe-
dra and exact and efficient decomposition of polyhe-
dra into convex pieces. Algorithmica, 55(2):329–345,
2009.

[7] E. E. Hartquist, J. Menon, K. Suresh, H. B. Voelcker,
and J. Zagajac. A computing strategy for applica-
tions involving offsets, sweeps, and Minkowski oper-
ations. Comput. Aided Design, 31:175–183, 1999.

[8] A. Kaul, M. O’Connor, and V. Srinivasan. Comput-
ing Minkowski sums of regular polygons. In Proc. 3rd
Canadian Conf. on Comput. Geom., pp. 74–77, 1991.

[9] L. E. Kavraki. Computation of configuration-space
obstacles using the fast fourier transform. In Proc.
IEEE Int. Conf. on Robotics & Automation, pp. 255–
261, 1993.

[10] W. Li and S. McMains. A GPU-based voxelization
approach to 3D Minkowski sum computation. In
Proc. 2010 ACM Symp. Solid Phys. Model., pp. 31–
40. ACM Press, 2010.

[11] J.-M. Lien. A simple method for computing
Minkowski sum boundary in 3D using collision detec-
tion. In H. Choset, M. Morales, and T. D. Murphey,
editors, Alg. Foundations of Robotics VIII, volume 57
of Springer Tracts in Advanced Robotics, pp. 401–415.
Springer, 2009.

[12] T. Lozano-Pérez. Spatial planning: A configuration
space approach. IEEE Trans. on Comput., C-32:108–
120, 1983.

[13] V. Milenkovic and E. Sacks. A monotonic convolution
for Minkowski sums. Int. J. of Comput. Geom. Appl.,
17(4):383–396, 2007.

[14] The Cgal Project. Cgal User and Reference Man-
ual. Cgal Editorial Board, 4.5 edition, 2014. http:
//doc.cgal.org/latest/Manual/index.html.

[15] G. Varadhan and D. Manocha. Accurate Minkowski
sum approximation of polyhedral models. Graphical
Models, 68(4):343–355, 2006.

[16] R. Wein. Exact and efficient construction of planar
Minkowski sums using the convolution method. In
Proc. 14th Annu. Eur. Symp. Alg., pp. 829–840, 2006.

199



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

On the Complexity of the Discrete Fréchet Distance under L1 and L∞

Omer Gold∗ Micha Sharir∗

Abstract

We study the decision tree complexity of the discrete
Fréchet distance (decision version) under the L1 and
L∞ metrics over Rd. While algorithms for the Eu-
clidean (L2) discrete Fréchet distance were studied
extensively, the problem in other metrics such as L1

and L∞ seems to be much less investigated.

For the L1 discrete Fréchet distance in Rd

we present a 2d-linear decision tree with depth
O(n log n), for any constant d. For the L∞ discrete
Fréchet distance in Rd we present a 2-linear decision
tree with depth O(n log n), for any constant d. We
hope that these near-linear depth decision trees will
motivate the study of the problem in these metrics
and, in particular, will lead to the development of im-
proved algorithms.

1 Introduction

The Fréchet distance is a measure of similarity be-
tween curves that takes into account the location and
ordering of the points along the curves. Therefore it is
often better than the well-known Hausdorff distance
as a metric for comparing parameterized shapes. This
measure was introduced by Fréchet in 1906 [6].

Eiter and Mannila [5] introduced the discrete
Fréchet distance, a variant also known as the coupling
distance. They showed that this distance provides a
good approximation for the Fréchet distance between
curves, and provided a quadratic dynamic program-
ming algorithm to compute it.

Since then many studies have been made about
the discrete problem in the Euclidean plane: Agar-
wal et al. [1] showed a subquadratic algorithm
with O(n2 log log n/ log n) runtime1, Buchin et al. [3]
showed an algebraic computation tree lower bound of
Ω(n log n), and Bringmann [2] recently showed that
there is no algorithm with runtime O(n2−Ω(1)) (also
known as “truly subquadratic time”), assuming the
Strong Exponential Time Hypothesis. These bounds
hold for computing the exact distance and for the de-
cision version of the problem.

While much work has been made on the Euclidean
discrete Fréchet distance, the problem in other met-

∗School of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel; {omergold, michas}@post.tau.ac.il

1For the decision version, they showed a bound of
O(n2 log log n/ log2 n). Both are in the word RAM model.

rics, such as L1 and L∞ has been much less investi-
gated.

Buchin et al. [4] recently showed that the decision
tree complexity of the Euclidean discrete Fréchet dis-
tance in the plane is2 Õ(n4/3). This result is ob-
tained by using a range searching technique of Katz
and Sharir [9]. We will briefly review this result, and
argue that, for the problem under the L1 and L∞
metrics in Rd, the standard range searching approach
does not seem capable of giving us the results we aim
for, which we will establish using a different approach.

From now on, the term Lp discrete Fréchet distance
refers to the decision problem of determining whether
the discrete Fréchet distance with underlying norm
Lp is at most some parameter ε ≥ 0.

The contribution of this paper is given in the fol-
lowing theorems:

Theorem 1 Given two polygonal curves P , Q in
Rd with total complexity n (i.e., number of ver-
tices), there is a 2d-linear decision tree3 with depth
O(n log n) for the L1 discrete Fréchet distance be-
tween P and Q, for any constant d.

Theorem 2 Given two polygonal curves P , Q in Rd

with total complexity n, there is a 2-linear decision
tree with depth O(n log n) for the L∞ discrete Fréchet
distance between P and Q, for any constant d.

For Theorem 1 and Theorem 2, we generalize an
observation originated in Fredman’s 1976 work on the
decision tree complexity of (min, +)-matrix multipli-
cation [7], a fundamental problem in P, known for
being computationally equivalent to the APSP (all
pairs shortest paths) problem in directed graphs with
arbitrary real edge weights.

At the basis of Fredman’s technique is the trivial
(albeit ingenious) observation that a + b < c + d iff
a − c < d − b. This observation is often referred to
as Fredman’s trick. Fredman’s trick was also liberally
used by Grønlund and Pettie in their recent 3SUM
breakthrough [8].

2 Fréchet Distance

The Fréchet distance is often illustrated by a man and
a dog, each walking along a path (curve). The man

2The notation Õ(·) hides poly-logarithmic factors.
3A k-linear decision tree is one in which each branching is

based on a sign test of a linear expression with at most k terms.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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has the dog on a leash. Each of them may choose their
own speed and may stop but cannot walk backwards.
Then the Fréchet distance is the length of the shortest
leash that allows them to walk on their respective
curves from beginning to end.

More formally, following [5] we define a curve as a
continuous mapping f : [0, 1] → V , where (V, ρ) is a
metric space. Given two curves f : [0, 1] → V and
g : [0, 1] → V , their Fréchet distance is defined as

δF (f, g) = inf
α,β

max
t∈[0,1]

ρ(f(α(t)), g(β(t))),

where α and β are arbitrary continuous nondecreasing
functions from [0, 1] onto [0, 1].

When computing the Fréchet distance between ar-
bitrary curves, one typically approximates the curves
by polygonal curves. Eiter and Mannila [5] defined the
discrete Fréchet distance between polygonal curves
and showed it gives a good approximation to the
Fréchet distance between them.

A polygonal curve with n edges is a curve P :
[0, 1] → V , such that for each i ∈ {0, 1, . . . , n−1}, the
restriction of P to the interval

[
i
n , i+1

n

]
is affine. Since

the Fréchet distance is invariant under reparametriza-
tion, we can assume a polygonal curve P to be given
by the ordered list of its vertices, i.e., a sequence
P = (p0, . . . , pn).

Let P = (p0, . . . , pn) and Q = (q0, . . . , qm) be two
polygonal curves given by their ordered lists of ver-
tices. A coupling C = (c0, . . . , ck) between P and Q
is an ordered sequence of distinct pairs of vertices in
P , Q, such that c0 = (p0, q0), ck = (pn, qm) and cr =
(pi, qj) ⇒ cr+1 ∈ {(pi+1, qj), (pi, qj+1), (pi+1, qj+1)}.
The discrete Fréchet distance between P and Q is

δdF (P, Q) = min
C coupling

max
(pi,qj)∈C

ρ(pi, qj).

Eiter and Mannila [5] showed that

δF (P,Q) ≤ δdF (P,Q) ≤ δF (P,Q)+max{D(P ), D(Q)},

where D(P ) (resp., D(Q)) is the length of the longest
edge in P (resp., Q). Thus, if we add vertices to
the curves P , Q so that their edge lengths tend to
zero, their discrete Fréchet distance will tend to their
Fréchet distance.

Dynamic Programming Algorithm. Following [5],
we quickly review the standard quadratic dynamic
programming algorithm for the decision version of the
discrete Fréchet distance, in a metric space (V, ρ).

Given two point sequences A = (a1, . . . , an), B =
(b1, . . . , bn), and a parameter ε ≥ 0, the algorithm
creates an n × n Boolean matrix M , whose rows and
columns correspond to the points of A and B, respec-
tively. The algorithm fills the matrix with values 0/1
row by row. Every cell Mi,j in the matrix is filled by
1 iff both conditions hold:

1. At least one of the cells Mi−1,j , Mi,j−1, Mi−1,j−1

is filled with 1.

2. The distance ρ(ai, bj) is at most ε.

Otherwise, Mi,j is filled by 0. Intuitively, an entry
Mi,j is equal to 1 iff the pair (ai, bj) is reachable
from the starting placement (a1, b1) of the trip with
a “leash” of length ε. Otherwise, Mi,j is equal to 0.

The runtime of the algorithm is quadratic and the
number of input comparisons it does is also quadratic,
as there are potentially n2 distinct pairs of points
(ai, bj) to check whether ρ(ai, bj) ≤ ε.

3 Decision Tree for the Euclidean Plane

Buchin et al. [4] showed a quadratic algebraic deci-
sion tree4 with depth O(n4/3 log n) for the Euclidean
discrete Fréchet distance in the plane.

The decision tree is based on invoking the quadratic
dynamic programming algorithm following a prepro-
cessing stage. All the input comparisons in the dy-
namic programming algorithm are made by checking
if the distance of a point ai ∈ A from a point bj ∈ B
is less than the fixed given parameter ε. The prepro-
cessing stage will compute and store the answers for
these pairwise distance queries in a Boolean matrix

T
def
= (tij), where tij = 1 if ∥ai − bj∥2 ≤ ε, otherwise

tij = 0.

Given two point sequences A, B, with |A| = n,
|B| = m, and a parameter ε > 0, denote, for each
point a ∈ A, the circle of radius ε centered at a as ca.
A point b ∈ B lies inside a circle ca iff ∥a − b∥2 ≤ ε.
We obtain a set C of n congruent circles (all of radius
ε) and a set P (= B) of m points.

Katz and Sharir [9] showed that one can compute
a compact representation of the set of pairs of the
form (c, p), where p ∈ P , c ∈ C, and p lies inside
c, in O((m2/3n2/3 + m + n) log n) time and space.
This information suffices to construct T and invoke
the dynamic programming algorithm without using
further input comparisons.

Thus in total, when |A| = |B| = n, the number of
input comparisons is O(n4/3 log n).

4 Decision Trees for L1 and L∞ in Rd

Similar to the Euclidean case, range searching tech-
niques can also be used for the problem under other
metrics, for computing the pairwise distance queries
in the decision tree. However, as we now show, these
techniques, when routinely implemented, will give
much weaker results than those stated in Theorem 1
and Theorem 2.

4Namely, each branching is a sign test of a quadratic expres-
sion.

201



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

The simpler case is for the L∞ metric, for which
the unit ball in Rd has the form of a d-dimensional
hypercube. One can compute a d-dimensional range
tree data structure for the points of A, in time
O(n logd−1 n). For each point b = (b1, . . . , bd) ∈ B,
denote by cb its corresponding d-sphere (under L∞)
of radius ε, centered at b. Clearly, cb = [x1, y1] ×
[x2, y2] × · · · × [xd, yd] is a d-dimensional hypercube.

For each b ∈ B, we query the range tree with its
corresponding hypercube cb. This will give us all the
points of A that lie in cb. Since for each interval of
cb, the query takes O(log n) time, the query for cb

takes O(logd n) time. Using fractional cascading, this
can be improved to O(logd−1 n) time. In total, this
approach leads to a 2-linear decision tree of depth
O(n logd−1 n).

For the L1 metric, a similar approach will lead to a
much weaker result. The unit ball under the L1 metric
forms a d-dimensional cross-polytope with 2d facets.
Thus, querying such a ball will require 2d queries, each
performing O(log n) 2d-linear comparisons, resulting

in a 2d-linear decision tree of depth O(n log2d

n).
The range searching data structure is appropriate

also when the queries are not known in advance. Us-
ing Fredman’s trick, we leverage the fact that in our
case all the queries are known in advance, to obtain
better decision trees.

The L1 discrete Fréchet distance. We start by pre-
senting a 4-linear decision tree with depth O(n log n)
for the L1 discrete Fréchet distance in R2, and then
we explain how to modify it to obtain a 2d-linear de-
cision tree with depth O(n log n) for the problem in
Rd. This will prove Theorem 1.

The following property will allow us to apply Fred-
man’s trick on pairwise distance queries under the L1

norm.
For any real numbers x, y, z ∈ R, |x| + |y| ≤ z if

and only if all the following inequalities hold.

x + y ≤ z, x − y ≤ z,

−x + y ≤ z, −x − y ≤ z.

Since the L1 distance between a point ai = (xi, yi)
and a point bj = (xj , yj) is defined by

∥ai − bj∥1 = |xi − xj | + |yi − yj | ,
the property above leads to the following observation.

Observation 1 For ai = (xi, yi), bj = (xj , yj) ∈ R2,
∥ai − bj∥1 ≤ ε if and only if all the following inequal-
ities hold.

xi + yi ≤ xj + yj + ε,

xi − yi ≤ xj − yj + ε,

yi − xi ≤ yj − xj + ε,

−xi − yi ≤ −xj − yj + ε.

This observation is a sort of generalization of Fred-
man’s trick for the L1 distance between two points in
the plane.

Recall that we are given two point sequences in the
plane A = (a1, . . . , an), B = (b1, . . . , bn), and a dis-
tance parameter ε. The following algorithm deter-
mines whether δdF (A,B) ≤ ε.

1. Sort D1
def
= {xi + yi, x′

j + y′
j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

2. Sort D2
def
= {xi − yi, x′

j − y′
j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

3. Sort D3
def
= {yi − xi, y′

j − x′
j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

4. Sort D4
def
= {−xi − yi, −x′

j − y′
j + ε |

ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B}.

5. Using Observation 1, given the sorted orders on
D1, . . . , D4, construct the n × n Boolean matrix

T
def
= (tij), where tij =

{
1 if ∥ai − bj∥1 ≤ ε

0 otherwise.

6. Invoke the dynamic programming algorithm us-
ing T for the distance queries.

Steps 1–4 require O(n log n) comparisons. Using
Observation 1, Step 5 requires no comparisons (on
the raw data) at all, given the sorted orders on
D1, . . . , D4. Specifically, to test whether ∥ai − bj∥1 ≤
ε, we test the four corresponding inequalities from
Observation 1. Each inequality test is resolved by
the sorted orders on D1, . . . , D4. Step 6 requires no
comparisons, given the matrix T from Step 5. All
comparisons are sign tests of 4-linear expressions. In
total, the number of comparisons is O(n log n). The
algorithm can be implemented to run in O(n2) time,
using only O(n log n) input comparisons.

The algorithm can easily be extended to Rd, by us-
ing additional sorting steps (similar to steps 1–4), and
lead to a 2d-linear decision tree with depth O(n log n).
A generalization of Observation 1 to points ai =
(xi1 , . . . , xid

), bj = (xj1 , . . . , xjd
) in Rd leads to 2d

inequalities, each defined by a vector δ ∈ {−1, 1}d,
and has the form

d∑

k=1

δkxik
≤

d∑

k=1

δkxjk
+ ε.

Each such inequality is a 2d-linear expression. Thus,
for the same problem in Rd, the algorithm has 2d

sorting steps, and all comparisons are sign tests of
2d-linear expressions. This proves Theorem 1. �
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The L∞ discrete Fréchet distance. The previous
algorithm can easily be modified (and simplified) for
the L∞ norm. As before, we first consider the prob-
lem in R2, and later extend it to Rd. The L∞ dis-
tance between a point ai = (xi, yi) ∈ R2 and a
point bj = (xj , yj) ∈ R2 is defined by ∥ai − bj∥∞ =
max{|xi − xj | , |yi − yj |}. Hence,

∥ai − bj∥∞ ≤ ε ⇔ (|xi − xj | ≤ ε) ∧ (|yi − yj | ≤ ε) .

Thus we obtain the following observation.

Observation 2 For ai = (xi, yi), bj = (xj , yj) ∈ R2,
∥ai − bj∥∞ ≤ ε if and only if all the following inequal-
ities hold.

xi ≤ xj + ε, xj ≤ xi + ε,

yi ≤ yj + ε, yj ≤ yi + ε.

This leads to the following variant of the previous
algorithm, where the sets to be sorted are:

D1
def
= {xi, x′

j + ε | ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B},

D2
def
= {x′

j , xi + ε | ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B},

D3
def
= {yi, y′

j + ε | ai = (xi, yi) ∈ A, bj = (x′
j , y

′
j) ∈ B},

D4
def
= {y′

j , y′
i + ε | ai = (xi, yi) ∈ A, bj = (x′

j , y
′
j) ∈ B}.

Using Observation 2, given the sorted orders on
D1, . . . , D4, one can construct the Boolean matrix

T
def
= (tij), where tij =

{
1 if ∥ai − bj∥∞ ≤ ε

0 otherwise,

with no further comparisons. Now, one can invoke
the dynamic programming algorithm and use T for
the distance queries.

Similarly to the L1 norm, the above algorithm uses
O(n log n) input comparisons and can be implemented
to run in O(n2) time. Each comparison is a sign test
of a 2-linear expression.

Following a generalization of Observation 2 to
points in Rd, the algorithm can be extended to Rd by
adding additional sorting steps. We have 2d sorting
steps for the problem over Rd, two for each coordinate.
Each comparison will still be a 2-linear expression, in-
dependent of d. Thus in total we obtain a 2-linear
decision tree with depth O(n log n) for the problem in
Rd, for any constant d. This proves Theorem 2. �

5 Discussion

An intriguing aspect of the presented results is the
“large” gap we obtain between the nonuniform and
the known uniform complexity of the problems.

For some archetypal problems in P, a gap of
√

n
was shown5, starting with the (min, +)-matrix mul-
tiplication [7], to the recent 3SUM and Zero Triangle
results [8]. For the Euclidean discrete Fréchet dis-
tance in the plane, a gap of n2/3 was noted above.

The quadratic time algorithm of Eiter and Man-
nila [5] can compute the discrete Fréchet distance in
any metric space. For the L1 and L∞ versions, our
O(n log n) decision trees give a gap of n. We hope that
this “large” gap will motivate the study of the prob-
lem in these metrics. In particular, can one obtain a
truly subquadratic algorithm for these problems? or
on the other hand, does a similar result to the con-
ditional lower bound of Bringmann [2] (for the Eu-
clidean discrete Fréchet distance) can be obtained for
the problem under metrics L1 and L∞?

Another open question is whether our decision trees
are optimal. The Ω(n log n) lower bound proof in [3]
cannot be applied to the L1 or L∞ versions, as it
exploits the strict convexity of the Euclidean plane.
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A Middle Curve Based on Discrete Fréchet Distance∗
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Abstract

Given a set of polygonal curves we seek to find a “mid-
dle curve” that represents the set of curves. We ask
that the middle curve consists of points of the input
curves and that it minimizes the discrete Fréchet dis-
tance to the input curves. We develop algorithms for
three different variants of this problem.

1 Introduction

Consider a group of animals or people traveling to-
gether, several of which are GPS-tagged. Based on
their trajectories, i.e., sequences of time-stamped po-
sitions, we want to compute a representation of a mid-
dle path taken by the group. Because sampled lo-
cations are more reliable than positions interpolated
in between those, we seek a middle path consisting
only of sampled locations. The middle path should
be as close as possible to the path of the individuals,
hence we ask for it to minimize the discrete Fréchet
distance to these. The Fréchet distance [2] and the
discrete Fréchet distance [4] are well-known distance
measures, which have been used before in trajectory
analysis.

We consider three variants of this problem, which
we introduce now more formally for two curves. Given
two point sequences P and Q, of length n and m re-
spectively, and ε > 0, we wish to determine whether
there exists a middle curve R consisting of points from
P ∪ Q with max(dF (R,P ), dF (R,Q)) ≤ ε, where dF
denotes the discrete Fréchet distance.

In the following definitions we assume that each
point in R uniquely corresponds to a point in P or
Q (in particular, if P and Q share points). We say
the middle curve R is ordered, if any two points of P
occurring in R have the same order as in P , likewise
with points from Q. We say the middle curve R is
restricted, if points on R are mapped to themselves
in a matching realizing the discrete Fréchet distance.
That is, consider a point p in R originating from P ;
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ence Association), and by the National Science Foundation un-
der grant CCF-1301911.
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‖Tulane University, cwenk@tulane.edu

In a matching between R and P realizing dF (R,P ),
p as a point of R is mapped to itself on P .

P

Q

R

Figure 1: Example of a middle curve R of curves P,Q.

Related work. Several papers [3, 5] study the problem
of finding a middle curve but without the restriction
that the middle curve should consist of points of the
input curves. Buchin et al. [3] restrict to use parts
of edges of the input, and the aim is to always “stay
in the middle” in the sense of a median. Har-Peled
and Raichel [5] show that without any restrictions on
the middle curve (i.e., neither using input vertices nor
edges), a curve minimizing the Fréchet distance to k
input curves can be computed in the k-dimensional
free space using the radius of the smallest enclosing
disk as “distance”.

2-Approximation. A simple observation is that choos-
ing any of the input curves is a 2-approximation to
minimizing the distance (using the triangle inequal-
ity). Thus, we have a 2-approximation in constant
time (not counting the time to output the points of
the curve). Also, it is easy to give an example showing
that this 2-approximation is tight.

Results. We develop algorithms for three variants of
this problem (runtime for k ≥ 2 curves of size at most
n each):

1. An O(nk+n2 log n) time algorithm for computing
an unordered middle curve,

2. An O(n2k) time algorithm for computing an or-
dered middle curve,

3. An O(nk logk−1 n) time algorithm for computing
an ordered and restricted middle curve.

In the following, we will also call these three cases
the “unordered, ordered, and restricted case”. In the
following sections, we present these algorithms. Due
to space restrictions, we focus on describing the algo-
rithms, omitting details and proofs.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Algorithm for the unordered case

To solve the decision problem for the unordered case,
we modify the algorithm for computing the discrete
Fréchet distance of two curves [4] as follows. We
search again for a path in the free space matrix. Now
(in contrast to the original algorithm) we color a ver-
tex (i, j) free iff there exists any vertex v from P or Q
such that v has distance ≤ ε to both pi and qj . Then
again we search for a monotone path in the free space
matrix. For the computation problem, we label each
vertex (i, j) with minv∈P∪Q max(‖v − pi‖, ‖v − qj‖),
and search for a path minimizing the maximum label.

The runtime for searching the grid is (in both cases)
O(mn). To compute the vertex labels (0|1 or dis-
tances) takes O(mn(m+n)) time brute-force (i.e., for
each vertex (i, j) test all (m+ n) possibilities for v in
O(1) time). For k curves of length at most n this takes
O(kn(k+1)) time in total. Next, we describe how to do
this more efficiently. Here, we use a circular sweep to
determine for each point p all points q such that (p, q)
is free, i.e., there is some point v of P or Q which has
distance ≤ ε to both p and q.

Constructing the free space matrix. For any p ∈ P :

1. Determine all disks of radius ε around points in
P ∪Q that contain p.

2. Determine the union U of those disks. This can
be done by divide-and-conquer as follows: Since
U is star-shaped its boundary ∂U is a sequence of
circular arcs with vertices in between. We main-
tain the rays from p to these vertices sorted clock-
wise, say. Then it is easy to merge two bound-
aries of unions of n/2 disks into one of n disks.

3. Sort all points of Q around p in a clockwise fash-
ion and merge them with the vertices of ∂U .

4. Perform a circular sweep around p with the points
of Q and the vertices of ∂U as event points. Dur-
ing the sweep, compare each point q ∈ Q encoun-
tered with the intersection point of the ray with
the current circular arc of ∂U . Thus, it can be
determined whether q is also in U . If so, mark
the entry (p, q) in the free space matrix as “free”.

Correctness. For the correctness of the algorithm,
observe that for any pair (p, q) chosen in step 4 it
must be true that q lies in one of the disks which
contain p, and vice versa.

Runtime. One execution of step 1 takes time O(m+
n). In step 2, the complexity of ∂U is O(n), see,
e.g., [1]. The merging can be done in linear time, so
the divide-and-conquer algorithm takes time O((m+
n) log(m + n)). Step 3 takes time O(m logm) for
the sorting and O(m + n) for the merging. Step 4
takes linear time. Since these steps are carried out

for each point p ∈ P the total runtime for setting
up the free space matrix is O(n(m + n) log(m + n)).
Since the roles of P and Q can be exchanged we
can achieve O(min(m,n)(m + n) log(m + n)) which
is O(mn log(mn)).

Output a middle curve. If in addition to a yes-answer
for the decision problem also a covering sequence it-
self is wanted, each circular segment of ∂U should be
labeled with the center point of its circle. This label
is also entered into the free space matrix so that the
sequence of labels of a monotone path gives a feasible
unordered sequence for the middle curve.

Optimization problem. Solving the optimization
problem can again be done by a binary search on the
set of distances between pairs of points from P ∪ Q
involving in each step the algorithm for the decision
problem. This results in a O(mn log2mn) runtime.

Several curves. The decision algorithm can be ex-
tended to k curves P 1, ..., P k. Then, having the outer
loop for all points p ∈ P 1, say, in step 4 we determine
which points p2 ∈ P 2, . . . , pk ∈ P k lie inside U , as
well. For all combinations p, p2, ..., pk the correspond-
ing entries in the k-dimensional free space matrix are
marked as free. The runtime is O(n1N logN + M)

where N =
∑k
i=1 ni and M =

∏k
i=1 ni, which is only

a minor improvement over the brute force algorithm
with run time O(N(N +M)).

3 Dynamic programming for the ordered case

Now we present a dynamic programming algorithm
for computing an ordered middle curve. As input we
assume two sequences P,Q and we search for an or-
dered middle curve R. Let us denote by Pi, 1 ≤ i ≤ n,
the “prefix” (p1, ..., pi) of a sequence P = (p1, ..., pn).
P0 is defined as the empty sequence.

Our dynamic programming algorithm operates
with four-dimensional Boolean arrays of the form
X[i, j, k, l], 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m, where
X[i, j, k, l] is true iff there exists an ordered sequence
R from points in Pi ∪Qj with

max(dF (R,Pk), dF (R,Ql)) ≤ ε.

We say in this case that R covers Pk and Ql.
Clearly, the decision problem has a positive answer
iff X[n,m, n,m] (or any X[i, j, n,m]) is true.

In order to determine the value of some X[i, j, k, l]
from entries of X with lower indices, we need more
information, particularly, whether there is a covering
sequence R in which the points pi and qj occur, and if
they do, whether they occur in the interior or at the
end of the sequence. To this end, the array X is the
componentwise disjunction of seven Boolean arrays

X = A ∨B ∨ C ∨D ∨ E ∨ F ∨G
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with the meanings that a sequence R covering Pk and
Ql exists with the following properties, respectively:

A[i, j, k, l]: R contains neither pi nor qj .

B[i, j, k, l]: R contains pi in its interior but does not
contain qj .

C[i, j, k, l]: R ends in pi but does not contain qj .

D[i, j, k, l]: R contains qj in its interior but does not
contain pi.

E[i, j, k, l]: R ends in qj but does not contain pi.

F [i, j, k, l]: R contains qj in its interior and ends in pi.

G[i, j, k, l]: R contains pi in its interior and ends in qj .

Observe that R cannot contain both, pi and qj , in its
interior (i.e. not at the end).

The entries of the arrays can be initialized or
computed from entries with lower indices because of
the following identities, which hold for each index
i, j, k, l ≥ 1, if that index minus 1 occurs in the for-
mula and for all indices ≥ 0 otherwise.

A[0, 0, 0, 0] = true

A[0, 0, k, l] = false for k ≥ 1 or l ≥ 1
A[i, 0, k, l] = X[i− 1, 0, k, l]
A[0, j, k, l] = X[0, j − 1, k, l]
A[i, j, k, l] = X[i− 1, j − 1, k, l]

B[i, 0, k, l] = B[0, j, k, l] = false

B[i, j, k, l] = G[i, j − 1, k, l] ∨B[i, j − 1, k, l]

The first equality is correct, since pi must be at the
end of R if no points from Q are available. In the
second equality, G[i, j − 1, k, l] accounts for the case
that R contains qj−1 (which then must be at the end)
and B[i, j − 1, k, l] for the case that it does not.

In the following, let cl(p, q) for points p and q de-
note the truth value for ‖p − q‖ ≤ ε. These can be
determined for all pairs of points in P ∪ Q by pre-
processing. The following equalities for C[i, j, k, l] are
obtained by case distinction whether the final point pi
in the sequence R covers only pk and ql or also other
points occurring previously in the sequences Pk and
Ql, respectively.

C[i, j, 0, l] = C[i, j, k, 0] = C[0, j, k, l] = false

C[i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql) ∧
(A[i, j, k − 1, l − 1] ∨ C[i, j, k − 1, l − 1]
∨ C[i, j, k − 1, l] ∨ C[i, j, k, l − 1])

The entries of D and E can be determined analo-
gously to the ones of B and C with the roles of pi
and qj exchanged. The identities of F have similar
explanations as the ones of C:

F [0, j, k, l] = F [i, 0, k, l] = F [i, j, 0, l]
= F [i, j, k, 0] = false

F [i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql)∧
(D[i, j, k − 1, l − 1] ∨ E[i, j, k − 1, l − 1]
∨ F [i, j, k − 1, l] ∨ F [i, j, k, l − 1])

The entries of G can be determined analogously to
the ones of F with the roles of pi and qj exchanged.

Runtime. The dynamic programm runs in time
O(n2m2) which is the size of each of the eight arrays.

Output a middle curve. Not only the existence of
a covering sequence R, but R itself can be computed
by setting a pointer for each array entry of the form
Y [i, j, k, l], which is set to true, to the 4-tupel(s) of
indices at the right hand side of an equality that has
made it true. Note that there can be an exponential
number of valid middle curves.

Optimization problem. The value of max(dF (R,P ),
dF (R,Q)) must be one of the distances between two
points in P ∪Q. Therefore, the optimization problem
can be solved by determining these distances, sort-
ing them, and finding the correct value by binary
search, invoking in each step the decision algorithm
with the current value of ε. Altogether, this takes
time O(n2m2 log(n+m)).

Several Curves. The decision (and optimization) al-
gorithm can be generalized to k sequences P 1, ..., P k.
The runtime in this case is O(n21...n

2
k) for constant k

(but the number of arrays is 2k−1(k + 2)− 1).

4 Algorithm for the Restricted Case

Now the reparameterizations for minimizing
max(dF (R,P ), dF (R,Q)) are restricted to map
every vertex of R to itself in the input curve it
originated from. This case allows for a more efficient
dynamic program.

For this, we define arrays akin to Section 3. Let
X[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m, be true iff there exists
an ordered sequence R from points in Pi ∪Qj with

max(dF (R,Pi), dF (R,Qj)) ≤ ε,

with the restriction that any vertex of R is mapped
to itself in the input curve it originated from. We
say in this case that R restrictively covers Pi and Qj .
Clearly, the decision problem has a positive answer iff
X[n,m] is true.

Akin to Section 3 we can write X as a disjunction
of three Boolean arrays

X = A ∨ C ∨ E

with the meanings that a sequence R covering Pi and
Qj exists with the following properties1, respectively:

A[i, j]: R contains neither pi nor qj

C[i, j]: R ends in pi (and may or may not contain qj)

E[i, j]: R ends in qj (and may or may not contain pi)

1note that C here combines C and F in Section 3, and E
combines E and G in Section 3
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First we observe that

A[i, j] ⇔ ∃ i′ < i and j′ < j such that (C[i′, j′] ∧
(i, j) ∈ UP (i′, j′)) ∨ (E[i′, j′] ∧ (i, j) ∈ UQ(i′, j′))

C[i, j] ⇔ cl(pi, qj) ∧ there exist i′ < i and j′ < j

such that X[i′, j′] ∧ (i′, j′) ∈ L̂P (i, j)

E[i, j] ⇔ cl(pi, qj) ∧ there exist i′ < i and j′ < j

such that X[i′, j′] ∧ (i′, j′) ∈ L̂Q(i, j)

Here, the upper right wedge UP (i′, j′) and the lower
left wedge LP (i′, j′) represent subsets of point pairs
(pi, qj) for which pi and qj are both close to pi′ . The
upper right wedge consists of the connected set of such
close point index pairs (i, j) for which i′ ≤ i, j′ ≤ j,
and the set contains (i′, j′). The lower left wedge
consists of the connected set of such close point index
pairs (i, j) for which i ≤ i′, j ≤ j′, and the point set
contains (i′, j′).

Finally, we define the extended lower left wedge
L̂P (i′, j′) which, in addition to all points in the lower
left wedge LP (i′, j′) also contains the points (i, j) im-
mediately to the left or below, i.e., for which (i+1, j),
(i, j+1), or (i+1, j+1) is contained in LP (i′, j′). The
definition of UQ(i′, j′), LQ(i′, j′), L̂Q(i′, j′) is analo-
gous, consisting of point pairs (pi, qj) for which pi
and qj are both close to qi′ .

We compute X by incrementally adding true points
using an enhanced bottom-up dynamic programming.
In addition to storing the (m + 1) × (n + 1)-array
X, we also store the upper envelope X̄ of all true
points in X as a 1D array indexed by i. This will
allow us to efficiently add reachable points toX. More
specifically, we define X̄[i] = max{j |X[i, j] = true}.
Note that X as well as X̄ change during the dynamic
programming, as more and more true points get added
to X.

First, initialize all X[i, j] to false, except for
X[0, 0] which is set to true. Initialize X̄[0] = 0, and
X̄[i] = −1 for all i > 0.

Then, for i = 1 to m, and for j = 1 to n, compute
X[i, j] (and update X̄) as follows:

• If X[i, j] ∧ cl(pi, qj): Add UP (i, j) and UQ(i, j)
to X, together with a pointer to (i, j) that is
labeled P or Q accordingly. An upper wedge is
added to X by locating it in X̄, updating the
points in X that are above X̄ by setting them
to true, and finally updating X̄. We refer to
this as updating X and X̄ with the wedge. This
takes time proportional to the number of points
updated.

• If ¬X[i, j] ∧ cl(pi, qj): If L̂P (i, j) intersects X̄,
update X and X̄ with LP (i, j) and UP (i, j), and
if L̂Q(i, j) intersects X̄, update X and X̄ with
LQ(i, j) and UQ(i, j). Also update pointers la-
beled with P or Q accordingly. The check can

be done in constant time, and the update takes
time proportional to the number of new points
updated.

Correctness. For the correctness of the algorithm ob-
serve that if X[i, j] holds because of A[i, j], then it is
marked when the last point of a covering is processed.
If X[i, j] holds by C[i, j] or E[i, j], then this is handled
in the ¬X[i, j] ∧ cl(pi, qj) case of the algorithm.

Runtime. By storing X̄ in a binary search tree the
algorithm runs in time O(mn log(min(m,n))). For
this, store X̄ in a binary search tree sorted on i and
augmented by the minimum value X̄[i] in a subtree
rooted at a node. A rectangle with corners (i, j) and
(u, r) can be queried by following the two paths to i
and u. In between those paths process all subtrees
with minimum smaller than r. Updating the values
for X̄[i] and the minimum of these takes logarithmic
time as well. Thus, it takes at most logarithmic time
both to mark and to process an entry of X.

Several Curves. For k > 2 curves the algorithm works
the same with a k − 1 dimensional range tree for X̄,
and runtime O(nk logk−1 n).
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Computing the Similarity Between Moving Curves∗

Kevin Buchin† Tim Ophelders† Bettina Speckmann†

1 Introduction

A significant amount of algorithmic research in recent
years has focused on the analysis of trajectories: se-
quences of time-stamped points which represent the
movement of objects over time. Not all moving ob-
jects, however, can be reasonably represented as points.
Here we hence go beyond this basic setting, by study-
ing moving complex, non-point objects. Specifically,
we focus on similarity measures for moving curves
which can, for example, model changing coastlines,
retreating glacier termini, or slithering snakes.

We base the similarity measures between moving
curves on the Fréchet distance. We model a moving
curve as a sequence of T + 1 polylines, each of P + 1
vertices. Consecutive polylines are interpolated to
form a quadrilateral mesh of P ×T quadrilaterals with
parameters (p, t) ∈ [0, P ]× [0, T ].

The Fréchet distance is commonly used to determine
the similarity between curves A and B : [0, 1]→ Rn. A
natural generalization to more complex shapes uses the
definition of Eq. 1 where A and B have type X → Rn.

Dfd(A,B) = inf
µ:X→X

sup
x∈X
‖A(x)−B(µ(x))‖ (1)

Here, ‖ · ‖ : Rn → R is a norm such as the Euclidean
norm (L2) or the Manhattan norm (L1). The match-
ing µ ranges over orientation-preserving homeomor-
phisms (possibly with additional constraints) between
the parameter spaces of the shapes compared; as such,
it defines a correspondence between the points of the
compared shapes. Given one such matching we obtain
a distance between A and B by taking the largest
distance between any two corresponding points of A
and B. The Fréchet distance is then the infimum of
these distances taken over all possible matchings. For
moving points or static curves, we have as parameter
space X = [0, 1] and for moving curves or static sur-
faces, we have X = [0, 1]2. We define various similarity
measures by imposing further restrictions on µ.

Related work. The Fréchet distance between point tra-
jectories or polygonal curves can be computed in near-
quadratic time [2]. The natural generalization to mov-

∗K. Buchin, T. Ophelders, and B. Speckmann are supported
by the Netherlands Organisation for Scientific Research (NWO)
under project no. 612.001.106 (K. Buchin) and no. 639.023.208
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Synchronous Dynamic Asynchronous Constant
O(P 3T logP log(PT )) NP-complete

Asynchronous Dynamic Orientation-Preserving
NP-hard NP-hard in Rd, d ≥ 2

Figure 1: Time complexities; classes of matchings are
illustrated as images of regular grids.

ing (parameterized) curves is to interpret the curves
as surfaces parameterized over time and over the curve
parameter. The Fréchet distance between surfaces is
NP-hard [5], even for terrains [4]. In terms of positive
algorithmic results for general surfaces the Fréchet
distance is only known to be semi-computable [1].

When interpreting moving curves as surfaces it is
important to take the different roles of the two surface
parameters into account: the first is inherently linked
to time while the other is linked to space. Depending
on the application we do not want to treat these pa-
rameters equally. This naturally leads to restricted
versions of the Fréchet distance of surfaces. For curves,
restricted versions of the Fréchet distance have been
previously considered [3, 6]. For surfaces we are not
aware of similar results.

Results. We refine the Fréchet distance between sur-
faces to meaningfully compare moving curves. To do
so, we restrict matchings to be one of several suitable
classes. Here we often separate the matching into
positional and temporal matchings. Representative
matchings and running times for the classes considered
are illustrated in Fig. 1.

2 Synchronous Dynamic Matchings

Synchronous dynamic matchings align timestamps un-
der the identity matching, but the matching of po-
sitions may change continuously over time. Specifi-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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cally, the matching is defined as µ(p, t) = (πt(p), t).
Here, µ(p, t) : [0, P ]× [0, T ]→ [0, P ]× [0, T ] is contin-
uous, and for any t the matching πt : [0, P ] → [0, P ]
between the two curves is a nondecreasing surjection.

2.1 Freespace

Define the 3D freespace F3D
ε ⊆ [0, P ]× [0, P ]× [0, T ]

by Eq. 2. Then the Fréchet distance is at most ε if and
only if for some matching µ of the considered class, all
points (x, y, t) with µ(x, t) = (y, t) lie in F3D

ε .

(x, y, t) ∈ F3D
ε ⇔ ‖A(x, t)−B(y, t)‖ ≤ ε (2)

Define cells Cx,y,t of the freespace with (x, y, t) ∈ N3

by Eq. 3 as the freespace between two quadrilaterals.

Cx,y,t = [x, x+ 1]× [y, y + 1]× [t, t+ 1] ∩ F3D
ε (3)

To determine the conditions under which some match-
ing lies in the freespace, we derive some properties of
freespace cells in Lemma 1.

Lemma 1 Any cell Cx,y,t has a convex intersection
with any line parallel to the xy-plane or the t-axis.

2.2 Freespace Partitions in 2D

Whereas previous algorithms for the decision problem
of the Fréchet distance between curves compute a
path through the freespace, we use a dual problem
that extends to moving curves. We illustrate this dual
approach in the fictional 2D freespace of Fig. 2. Here,
any matching—such as the red path—must be an x-
and y-monotone path from the bottom left to the top
right corner and this matching must avoid all obstacles.
Therefore each such matching divides the obstacles in
two sets: those above, and those below the matching.

Figure 2: µ in 2D.

Suppose we are allowed to
draw a directed edge from an
obstacle a to an obstacle b if
and only if any matching that
goes over a must necessarily
go over b. The key observa-
tion is that no matching ex-
ists if and only if such edges
can form a path from the lower-
right boundary to the upper-left
boundary of the freespace. A
few of these edges are drawn in black and gray. In
the example, observe that if all obstacles were slightly
larger, an edge could connect a blue and green obstacle,
connecting the boundaries by the black edges.

In contrast to the 2D freespace where the matching
is a path, matchings form surfaces in the case of the 3D
freespace. Such a surface again divides the obstacles
in the freespace in two sets and can be punctured by
a path connecting two boundaries. We shall formalize
this approach for the 3D freespace (F3D

ε ).

2.3 Freespace Partitions in 3D

u

µ

dx
y

t

Figure 3: u, d and µ.

Observe that any match-
ing µ partitions obsta-
cles into two sets, namely
those above, and those
below µ. Let O be the
complete set of obstacles
and D ⊆ O be the obsta-
cles below the matching.
Then the upper bound-
ary u of the freespace
is never in D and the
lower boundary d of the
freespace is in D for any µ,
see Fig. 3. The boundaries lie just outside the freespace.
Let O′ consist of all obstacles between the boundaries
and let each obstacle be a connected subset of R3.

O = {u, d} ∪O′ where
⋃
O′ = F \ Fε;

F = [0, P ]× [0, P ]× [0, T ];

u = {(x, y, t) | (x < 0 ∧ y > 0) ∨ (x < P ∧ y > P )};

d = {(x, y, t) | (x > 0 ∧ y < 0) ∨ (x > P ∧ y < P )}.

Here, we use axes (x, y, t) and say that a point is
below some other point if it has a smaller y-coordinate.
Because each obstacle is a connected set and µ cannot
intersect obstacles, a single obstacle cannot lie on both
sides of the same matching. Because all matchings
have u /∈ D and d ∈ D, a matching exists if and only
if ¬(d ∈ D ⇒ u ∈ D).

We compute a relation . of elementary dependencies
between obstacles, such that its transitive closure e.
has d e. u if and only if d ∈ D ⇒ u ∈ D. Let a . b if
and only if a ∪ b is connected (a touches b) or there
exists some point (xa, ya, ta) ∈ a and (xb, yb, tb) ∈ b
with xa ≤ xb, ya ≥ yb and ta = tb. By Lemmas 2 and 3,
this choice of . satisfies the required properties and
by Theorem 4 we can use the transitive closure e. of .
to solve the decision problem of the Fréchet distance.

Lemma 2 If a e. b, then a ∈ D ⇒ b ∈ D.

Lemma 3 If d ∈ D ⇒ u ∈ D, then d e. u.

Theorem 4 The Fréchet distance is greater than ε if
and only if d e. u for ε.

We choose the set of obstacles O′ such that
⋃
O′ =

F \ Fε and the relation . is easily computable. Note
that due to Lemma 1, each connected component
contains a corner of a cell, therefore any cell in the
freespace contains constantly many (up to eight) com-
ponents of F \Fε. As such, we can index the obstacles
in O′ by a grid point (x, y, t) ∈ N3 combined with one
of the adjacent cells (with (x, y, t) as a corner).
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O′ =
⋃

(x,y,t)∈N3∩(F\Fε)
O′x,y,t where

O′x,y,t = {ox,y,t,C | cell C has (x, y, t) as a corner},

ox,y,t,C is the maximal connected set with
(x, y, t) ∈ ox,y,t,C ⊆ (F \ Fε) ∩ C.

Since obstacles in O′x,y,t touch at grid point (x, y, t),
we treat them as a single obstacle ox,y,t =

⋃
O′x,y,t.

Two obstacles ox,y,t,C and ox′,y′,t′,C represent the
same set of points if (x, y, t) is connected to (x′, y′, t′)
within C, but treat two such obstacles as distinct
obstacles.

Each of the O(P 2T ) obstacles is now defined by a
constant number of vertices. We therefore assume that
for each pair of obstacles (a, b) ∈ O2, we can decide
in constant time whether a . b. For each obstacle a
in a cell Cx,y,t, there can only be O(P 2) obstacles b
for which a . b; namely obstacles u, d, and those in
cells Cx′,y′,t′ with t′ ∈ {t − 1, t, t + 1}. Therefore we
can compute the relation . in O(P 4T ) time.

Testing whether d e. u is equivalent to testing
whether there exists a path from d to u in the directed
graph (O, .), which can be decided in O(| . |) time
using a depth first search. Thus, the decision problem
for the Fréchet distance is solved in O(| . |) = O(P 4T )
time. There are many unnecessary edges in . which we
do not have to compute (see Theorem 5). To compute
the exact Fréchet distance, the parametric search of
Section 2.4 is applied to the decision problem.

Theorem 5 The decision problem for the syn-
chronous dynamic Fréchet distance is solvable
in O(P 3T logP ) time.

2.4 Parametric Search

x

y

t

Figure 4: [0, 2]3 \ F3D
ε

To give an idea of what
the 3D freespace looks like,
we have drawn the ob-
stacles of the eight cells
of the freespace between
two quadrilateral meshes
of size P × T = 2 × 2
in Fig. 4. Cells of the
3D freespace lie within
cubes and have six faces
and twelve edges. Accord-
ing to the axis to which
they are parallel, we de-
note such edges by x-, y- or t-edges.

We are looking for the minimum value of ε for which
a matching exists. When increasing the value of ε,
the relation . becomes smaller since obstacles shrink.
Critical values of ε occur when . becomes smaller.
Due to Lemma 1, all critical values involve an edge or
an xt-face or yt-face of a cell, but never the internal
volume, so the following critical values cover all cases.

a) The minimal ε such that (0, 0, t) ∈ F3D
ε and

(P, P, t) ∈ F3D
ε for all t.

b) An edge of Cx,y,t becomes nonempty.

c) The endpoints of two y-edges (or two x-edges)
of Cx,y,t and Cx+i,y,t (or Cx,y−j,t) align.

d) An endpoint of a t-edge of Cx,y,t aligns with an
endpoint of a t-edge of Cx+i,y−j,t.

e) An obstacle in Cx,y,t stops overlapping with an
obstacle in Cx+i,y,t or Cx,y−j,t when projected
along the x- or y-axis.

b

c

a

x

y

t

Figure 5: a.b and a.c

We illustrate the need for
critical values of type e) in
Fig. 5. Here obstacle a over-
laps with both obstacles b
and c while the overlap in
edges does not contribute
to .. The critical values of
types a), b) and c) resem-
ble those in the paper by Alt
and Godau [2]. The endpoints
involved in the critical values

of type a), b), c) and d) can be captured in O(P 2T )
functions.

We apply a parametric search [7] on them to find
the minimum critical value εabcd of type a), b), c)
or d) for which a matching exists. This paramet-
ric search takes O((P 2T + timedec) log(PT )) time
where timedec = O(P 3T logP ) is given by Theorem 5.

It is unclear how critical values of type e) can
be incorporated in the parametric search directly.
Instead, we enumerate and sort the O(P 3T ) criti-
cal values of type e) in O(P 3T log(PT )) time. Us-
ing O(log(PT )) calls to the decision algorithm, we
apply a binary search to find the minimum critical
value εe of type e) for which a matching exists. Find-
ing εe then takes O((P 3T + timedec) log(PT )) time.

The synchronous dynamic Fréchet distance is then
the minimum of εabcd and εe. Because the decision
problem takes timedec = O(P 3T logP ) time, the run-
ning time of Theorem 6 is achieved for the exact
Fréchet distance.

Theorem 6 The synchronous dynamic Fréchet dis-
tance can be computed in O(P 3T logP log(PT )) time.

3 Hardness

We extend the synchronous dynamic class of match-
ings to the asynchronous dynamic class by allowing
realignments of timestamps. Matchings of this class
have the form µ(p, t) = (πt(p), τ(t)) where π and τ are
realign positions and timestamps and the positional
matching πt changes over time. In the more restricted
asynchronous constant class µ(p, t) = (π(p), τ(t)) the
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positional matching cannot change over time. The
Fréchet distance is in NP for this class because piece-
wise linear π and τ exist whenever a matching exist.

Theorem 7 Computing the Fréchet distance is in NP
for the asynchronous constant class of matchings.

Due to critical values of type e), it is unclear
whether every asynchronous dynamic matching ad-
mits a piecewise-linear matching τ∗ of polynomial
size, which would mean that the asynchronous dy-
namic Fréchet distance is also in NP.

Computing the Fréchet distance is NP-hard for both
classes by a reduction from 3-SAT. The idea behind
the construction is illustrated in the two height maps
of Fig. 6. The height maps represent quadrilateral
meshes embedded in R1 and correspond to a single
clause in a 3-CNF formula of four variables.

We distinguish valleys (dark), peaks (white on A,
yellow on B) and ridges (denoted Xi, Fi and Ti). Ob-
serve that to obtain a low Fréchet distance of ε < 3,
the n-th valley of A must be matched with the n-th
valley of B. Moreover, each ridge Xi must be matched
with Fi or Ti and each peak of A must be matched
to a peak of B. Note that even for asynchronous dy-
namic matchings, if Xi is matched to Fi it cannot be
matched to Ti and vice-versa because the (red) valley
separating Fi and Ti has distance 3 from Xi.

Consider a 3-CNF formula with n variables and m
clauses, then A and B consist of m clauses along the t-
axis and n variables (X1 . . . Xn and F1, T1 . . . Fn, Tn)
along the p-axis. The k-th clause of A is matched to
the k-th clause of B due to the elevation pattern on
the far left (p = 0). This means that the peaks of A
are matched with peaks of the same clause on B and
for these peaks have the same timestamp because τ(t)
does not depend on p. For each clause, there are three
rows (timestamps) of B with peaks on the ridges. On
each such timestamp, exactly one ridge (depending
on the disjuncts of the clause) does not have a peak.
Specifically, if a clause has Xi or ¬Xi as its k-th
disjunct, then the k-th row of that clause has no peak
on ridge Fi or Ti, respectively. By Theorem 10, it is

0

T/2

p

t X1 X2 X3 X4

0

T/4

p

t F1 T1 F2 T2 F3 T3 F4 T4

Figure 6: Meshes A (top) and B (bottom) in R1 (indi-
cated by color). Their Fréchet distance is two isolines
if (X2 ∨¬X3 ∨¬X4) is satisfiable and three otherwise.

then NP-hard to approximate the Fréchet distance
within a factor 1.5.

Under the class of orientation-preserving homeomor-
phisms (restricted by aligning the four corners between
of the meshes), we can embed the meshes in R2 and
ensure that all points on A of the same timestamp are
matched to similar timestamps of B and Theorem 11
follows.

Lemma 8 The Fréchet distance between two such
moving curves is at least 3 if the corresponding 3-CNF
formula is unsatisfiable.

Lemma 9 The Fréchet distance between two such
moving curves is at most 2 if the corresponding 3-CNF
formula is satisfiable.

Theorem 10 No polynomial time algorithm can ap-
proximate the asynchronous constant or asynchronous
dynamic Fréchet distance between two quadrilateral
meshes in R1 within a factor 1.5 unless P=NP.

Theorem 11 No polynomial time algorithm can ap-
proximate the orientation-preserving Fréchet distance
between quadrilateral meshes in R2 under the maxi-
mum norm within a factor 1.5 unless P=NP.
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Exact solutions for the continuous 1.5D Terrain Guarding Problem

Stephan Friedrichs∗ Michael Hemmer† Christiane Schmidt‡

Abstract

In the NP -hard continuous 1.5-dimensional Ter-
rain Guarding Problem (TGP) we are given an x-
monotone chain (the terrain T ) and ask for the min-
imum number of point guards (located anywhere on
T ), such that all points of T are covered. We recently
gave guard candidate and witness sets of polynomial
size, G and W , such that there exists a minimum-
cardinality guard cover G∗ ⊆ G that covers T , and
when these guards monitor all points in W , all of T is
guarded. This leads to a PTAS as well as an (exact)
IP formulation for TGP. In this paper, we significantly
reduce the size of G and W , allowing us to propose an
algorithm for reliably finding exact, optimal solutions
for instances with 100000 vertices within seconds.

1 Introduction

Let a terrain T denote an x-monotone chain defined
by its vertices V = {v1, . . . , vn}. It has edges E =
{e1, . . . , en−1} with ei = vivi+1. For p, q ∈ T , we
write p < q if p is left of q.

A point p ∈ T sees or covers q ∈ T iff pq is nowhere
below T . V(p) is the visibility region of p with V(p) =
{q ∈ T | p sees q}. V(p) is not necessarily connected,
and can be considered as the union of O(n) maximal
subterrains, compare Figure 1. We say that q ∈ V(p)
is extremal in V(p), if q has a maximal or minimal
x-coordinate within its connected component of V(p).
For G ⊆ T we abbreviate V(G) :=

⋃
g∈G V(g). A set

G ⊆ T with V(G) = T is named a (guard) cover of T .
In this context, g ∈ G is referred to as guard.

Definition 1 (Terrain Guarding Problem) For
a terrain T and sets of guard candidates and wit-
nesses, G and W , the Terrain Guarding Problem
(TGP), TGP(G,W ), asks for a minimum-cardinality
G∗ ⊆ G such that W ⊆ V(G∗). We assume W ⊆
V(G), i. e., that TGP(G,W ) has a feasible solution.

TGP(T, T ) is the continuous TGP and TGP(V, T )
that with vertex guards. Motivation for terrain guard-
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p

Figure 1: The visibility region V(p) of point p (blue).

ing is the placement of street lights or security cam-
eras along roads [8], and the optimal placement of an-
tennas for line-of-sight communication networks [1].

1.1 Related Work

The terrain guarding problem is closely related to the
well known Art Gallery Problem where the objective
is to find a minimum cardinality guard set that cov-
ers a given polygon. See, e. g., O’Rourke [12] for a
detailed survey on classical results and de Rezende
et al. [5] for recent computational developments.

For the terrain guarding problem the focus was on
approximation algorithms [1, 3, 10, 6], because NP -
hardness was generally assumed but only shown in
2010 by King and Krohn [11]. In 2009, Gibson et
al. [8] showed that the discrete terrain guarding prob-
lem TGP(G,W ), where G and W are finite subsets of
the terrain T , allows a polynomial time approximation
scheme (PTAS) based on local search. For the con-
tinuous problem we recently [7] gave polynomial size
guard and witness sets, G and W , such that there ex-
ists an optimal guard cover G∗ ⊆ G that covers T .
This leads to a PTAS as well as an (exact) IP formu-
lation for the continuous terrain guarding problem.

Our Contribution After summarizing the essentials
of our discretization [7] (Section 2) we derive a fil-
ter that significantly reduces the size of constructed
sets G and W (Section 3). This drastically reduces
the overall complexity, making it possible to devise a
reliable algorithm producing optimal solutions for in-
stances of 100000 vertices within seconds on a desktop
PC; see Section 4.

2 Discretization

This section summarizes our discretization from [7].
Section 2.1 shows how to construct a finite witness set
W (G) from a given finite guard candidate set G ⊂ T
such that any feasible solution of TGP(G,W (G)) is
feasible for TGP(G,T ) as well. Section 2.2 discusses a

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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g3

Figure 2: Visibility overlay of three guards.

finite set of guards U that allows minimum-cardinality
coverage of T . An IP formulation for an exact solu-
tions as well as a PTAS built upon [8] follows.

2.1 Witnesses

Suppose we are given a terrain T and a finite set
G ⊂ T of guard candidates with V(G) = T . We
provide a witness set W (G) such that TGP(G,T ) =
TGP(G,W (G)) by computing the overlay of all visi-
bility intervals of all guards in G as indicated in Fig-
ure 2. It forms a subdivision consisting of features f
(either maximal intervals or end points). Every point
in f is seen by the same set of guards

G(f) = {g ∈ G | f ⊆ V(g)} . (1)

It is thus sufficient to cover one representative witness
wf in each feature f of the overlay:

WT (G) = {wf | f} (2)

which we refer to as trivial witnesses. Similar to
shadow atomic visibility polygons [5], we can reduce
the number of witnesses by only using shadow wit-
nesses, i. e., witnesses in features f , such that G(f) ⊆
G(f ′) for the neighboring features f ′ of f :

WS(G) = {wf | f, G(f) is inclusion-minimal} . (3)

The asymptotic complexity remains unchanged:
|WS(G)|, |WT (G)| ∈ O(n|G|) [7], but in practice,
|WS(G)| � |WT (G)|. So picking W (G) := WS(G)
does make a difference; see Section 4.

2.2 Guard Positions

Throughout this section, let T be a terrain, V its ver-
tices and E its edges; let C ⊂ T be some finite, possi-
bly optimal, guard cover of T . Moreover, let U be all
vertices and their visibility regions’ extremal points:

U := V ∪
⋃

v∈V
{p | p is extremal in V(v)} . (4)

It is easy to see that U has cardinality O(n2) [1]. We
show that for any cover C it is always possible to move
guards in C \ U to a neighboring point in U without
losing coverage. In particular, this is possible for an
optimal guard cover.

g` gr

g′

g′′
ei

vi+1vi

Figure 3: The edge ei is critical w. r. t. g` and gr. The
right (left) part of ei is seen by g` (gr) only.

First observe that we can not lose coverage for an
edge e that is entirely covered by a guard g ∈ C \ U
if we move g to one of its neighbors in U .

Lemma 2 ([7]) Let g ∈ C \U be a guard that covers
an entire edge ei ∈ E. Then u`, ur, the U -neighbors
of g with

u` = max{u ∈ U | u < g}
ur = min{u ∈ U | g < u} (5)

each entirely cover ei, too.

It remains to consider edges that are not entirely
covered by a single guard; see Figure 3:

Definition 3 (Critical Edge) e ∈ E is a critical
edge w. r. t. g in the cover C if C \ {g} covers some
part of, but not all of, e.

Definition 4 (Left-Guard/Right-Guard) g ∈ C
is a left-guard (right-guard) of ei ∈ E if g < vi (vi+1 <
g) and ei is critical w. r. t. g. We call g left-guard
(right-guard) if it is a left-guard (right-guard) of some
e ∈ E.

The following Lemma, which is a stronger variant
than one given in [7], shows that we can move a left-
guard g ∈ C \ V to its left neighbors in V .

Lemma 5 ([7]) Let C be some finite cover of T , g ∈
C \ V be a left- but no right-guard, and let v` be the
left neighbor in V of g. Then

C ′ = (C \ {g}) ∪ {v`} (6)

is a guard cover of T .

Proof. Since g is a left-guard there must exists a cor-
responding right-guard gr as depicted in Figure 4. g
is dominated to its left by gr. Moreover, g is domi-
nated to its right by v`; see Figure 5. Hence, we can
replace g by v`. �

The following lemma is also a stronger version of
one given in [7]. It states that no guard that is not
on a vertex can be a left- and right-guard at the same
time. We skip the proof, but the idea is given in
Figure 4.

Lemma 6 Let C be some finite cover of T . No g /∈ V
is both a left- and a right-guard.
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Figure 4: Left-guard g is dominated to its left by
right-guard gr. If g would also be a right-guard, then
left-guard g` would dominate g to its right as well,
implying that g is not necessary at all.

gv`

p
e

Figure 5: v` dominates g to its right.

Hence, there is no guard that is left- and right-
guard at the same time. Moreover, by Lemma 5 we
know that left/right-guards can even be moved to
their left/right neighbor in V . Only free guards, i.e.,
guards that are neither left- nor right-guards, require
the set U ; see Lemma 2. It follows:

Theorem 7 ([7]) Let T be a terrain, C ⊂ T a finite
guard cover of T , possibly of minimum cardinality,
and consider U as defined in Equation (4). Then there
exists a guard cover C ′ ⊆ U of T with |C ′| = |C|.

2.3 Complete Discretization and IP

Combining the above results implies:

Theorem 8 ([7]) Let T be a terrain, U and WS(U)
as defined in Equations (4) and (3). Then: If C is
solution of TGP(U,WS(U)) of minimal cardinality, C
is also an optimal solution of TGP(T, T ).

As described in [7], combining this with [8] directly
implies the existence of a PTAS for TGP(T, T ). Also,
an IP formulation immediately follows which is the
basis for our algorithm:

min
∑

g∈U
xg (7)

s. t.
∑

g∈V(w)∩U
xg ≥ 1 ∀w ∈WS(U) (8)

xg ∈ {0, 1} ∀g ∈ U (9)

Observation 1 ([7]) : The set of guard candidates
U has cardinality O(n2), the witness set WS(U) has
cardinality O(n3).

3 Reducing the Number of Guard Candidates

For practical purposes, we need to reduce the size
of U . The reason for that is twofold: (1) Fewer guards

need less memory and reduce the number of variables
in the IP. (2) Having fewer guards automatically gen-
erates less witnesses, further reducing IP size. We
present two filtering mechanisms.

3.1 Free-guard Filter

Consider all guard candidates in the interior of an
edge e, Ue = e∩ (U \V ) and recall that when moving
a guard across u ∈ Ue, a vertex becomes visible or
invisible. The set of edges entirely seen by u, Eu,
defines a partial order on Ue: u is inclusion-maximal,
if Eu′ ⊆ Eu for all u′ ∈ Ue. We show it suffices
to consider the inclusion-maximal guard candidates
w. r. t. this ordering.

Theorem 9 Let U ′e be the set that only contains
inclusion-maximal guard positions of Ue w. r. t. en-
tire edges. U ′e contains all guard candidates in the
interior of e that are required for an optimal cover
of T .

Proof. By Lemma 5 a left/right-guard can even be
moved to its left/right neighbor in V . By Lemma 6, it
remains to consider free guards, that is, guards that
are only responsible for covering entire edges, which
can obviously be replaced by an inclusion-maximal
alternative. �

Hence, we can filter out candidates in U that are
not inclusion-maximal. By remembering which vertex
generated which point in U , this filter can be applied
within one pass over the set U , specifically, without
calculating visibility regions for any point in U \ V .

3.2 Domination Test

Obviously, for different g, g′ ∈ U with V(g′) ⊆ V(g),
U \ {g′} still admits an optimal guard cover. It
takes O(n|U |2) = O(n5) time to filter out all dom-
inated guards from U . Our implementation applies
it only to neighboring g, g′, which takes O(n|U |) time
and still eliminates many guard candidates.

4 Implementation and Experiments

We implemented the following algorithm to deter-
mine an optimal solution of TGP(T, T ): (i) Com-
pute U as in Equation (4), optionally (i-a) filter U
as in Section 3.1, and, (i-b) filter U as in Section 3.2.
(ii) Determine shadow or trivial witnesses as in Equa-
tion (3) or (2) from the remaining candidates in U .
(iii) Solve (7) – (9).

The geometric part, phase (i)-(ii), of our implemen-
tation is based on CGAL [2] and follows the exact geo-
metric computation (EGC) paradigm. Specifically, it
uses the new algorithms for visibility in terrains pre-
sented in [9], which are part of the upcoming Visibility
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n Default NoDom Trivial NoFree

103 100% 100% 100% 100%
104 100% 100% 75% 100%
105 100% 99% 41% 48%

Table 1: Optimal solution rates.
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Figure 6: CPU-time spent by subroutine.

package of CGAL. Phase (iii) uses CPLEX-12.1.0 [4]
for solving the IPs.

The tests were run on Intel Core i7-3770 CPUs with
3.4 GHz, with imposed time- and memory limits of
900 s and 12 GB. For each n ∈ {1000, 10000, 100000},
we tested 80 instances with n vertices. In order to de-
termine the effect of each optional step, we tested the
following configurations of the algorithm: Default
runs both filters and shadow witnesses; Trivial ap-
plies all filters, but uses trivial witnesses; NoFree ap-
plies only filter (i-b), using shadow witnesses; NoDom
applies only filter (i-a), and uses shadow witnesses.
Hence, we test the version with all features enabled
and disable one feature at a time.

Table 1 indicates how effective our algorithm config-
urations were within the allotted limits: Default and
NoDom clearly outperform Trivial and NoFree.
Thus, even though our filtering mechanisms do not
reduce the asymptotic complexity of U and W (U),
they save our algorithm both memory and time. On
average, Default eliminated 98.4% of U .

Figure 6 shows how much time was spent in which
phase. It suggests that the time spent removing adja-
cent dominated guards roughly balances with the ben-
efits from a reduced IP size. The additional amount
of witnesses in Trivial increases IP solution times.
Not filtering the free guard candidates in NoFree
deals a devastating blow to performance: It imposes
many more visibility calculations and, paradoxically,
increases filtering times, caused by the sheer amount
of guards that have to be checked for domination.

Note that, due to efficient implementation, the bot-
tleneck of our algorithm is not the NP -hard IP solver
phase, nor a time problem at all; 92% of the unsuc-
cessful runs (of all configurations and input sizes) ter-
minated due to running out of memory, not time. This
is owed to the fact that, even with good filters, many
visibility regions have to be stored, all of them with

exact (not floating-point) coordinates—another indi-
cator why it is important to filter guards. Especially
the free guard filter from Theorem 9 has a very pos-
itive effect, because it can be run before calculating
the non-vertex-guards’ visibility regions.

5 Conclusion

We significantly reduced the the number of guard can-
didates in our discretization [7] of TGP(T, T ). This
allows us to reliably find exact, optimal guard covers
for 100000-vertex terrains within seconds on a desktop
computer.
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Efficient Algorithms and Implementations for Visibility in 1.5D Terrains
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Abstract

Visibility is a well studied problem in computational
geometry as it is used as a basic building block by
many algorithms. In this paper we focus on visibil-
ity in 1.5D terrains. We report on new implementa-
tions and corresponding experimental evaluations for
an extended version of the sweep line algorithm re-
cently presented by Löffler et al. as well as a variant
incorporating ideas of the Triangular Expansion algo-
rithm for polygons of Bungiu et al. Our algorithms
are currently submitted as an extension of the upcom-
ing visibility package of the Computational Geometry
Algorithms Library (CGAL).

1 Introduction

Let T denote a terrain, that is, an x-monotone chain
defined by its vertices V = {v1, . . . , vn}. It has edges
E = {e1, . . . , en−1} with ei = vivi+1. A point p
placed anywhere on or above T sees q ∈ T iff pq is
nowhere below T . V(p) is the visibility map of p with
V(p) = {q ∈ T | p sees q}. V(p) is not necessarily con-
nected, and can be considered as the union of O(n)
maximal subterrains. For a set of m view points P
we abbreviate V(P ) :=

⋃
p∈P V(p), see Figure 1 for

an example of a visibility map of two points.

Figure 1: The visibility map of two viewpoints (blue dots).

We are interested in an efficient computation of
V(P ) for |P | = m ≥ 1, which is an important build-
ing block in our ongoing efforts [7] to provide optimal
guard covers of 1.5D terrains. A problem that oc-
curs in the context of the placement of street lights
or security cameras along roads [9], or the optimal
placement of antennas for line-of-sight communication
networks [2].

∗Department of Computer Science, TU Braunschweig, Ger-
many. andreas.haas86@gmail.com, mhsaar@gmail.com

Setting up the integer program (IP) for the ter-
rain guarding problem (TGP) described in [6] by
Friedrichs et al., requires the construction of V(p) for
each guard candidate, which in turn requires the pro-
cessing of many single viewpoint queries for the same
terrain. The feasibility of a solution can then be ver-
ified with a fast algorithm for multiple viewpoints.
Therefore, we are interested in efficient implementa-
tions of visibility algorithms, both, for the particular
case with a single viewpoint and for the case with
multiple viewpoints.

For a single viewpoint we could use existing algo-
rithms for the computation of visibility in polygons
by closing the unbounded space above the 1.5D ter-
rain, which transforms it into a simple polygon. This
is a well-known problem with a number of established
algorithms, see the book by Ghosh [8]. The prob-
lem of computing V(q) was first addressed for simple
polygons in [5]. The first correct O(n) time algorithm
was given by Joe and Simpson [12]. Regarding algo-
rithms with preprocessing, Ghodsi et al. [10] reduced
the query time for simple polygons to O(log n + k),
where k is the complexity of the visibility region, at
the expense of preprocessing requiring O(n3) time
and space. In [3] Bose et al. showed that this time
can also be achieved for points outside of P with an
O(n3 log n) preprocessing time, while O(n3) space re-
mains. Aronov et al. [1] reduced the preprocessing
time and space to O(n2 log n) and O(n2) respectively
with the query time being increased to O(log2 n+ k).
However, all these algorithms are not applicable be-
cause they require too much space. Recently, Bungiu
et al. [4] introduced and implemented the Triangular
Expansion algorithm. The algorithm only requires lin-
ear space and, for simple polygons, guarantees O(n)
query time. As we reuse some of its ideas, we recap
this algorithm in more detail in Section 2.

A naive approach to determine the visibility map
for multiple viewpoints is therefore to compute and
union the visibility map for each viewpoint, which
would take O(nm) time. Recently, Löffler et al. [11,
13] proposed an O(n+m logm) sweep line algorithm
to compute the visibility map for viewpoints placed on
the terrain vertices. However, in contrast to the naive
approach, the information of V(p) for each individual
viewpoint p ∈ P is lost. We recap this algorithm as
well in Section 2.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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1.1 Our Results

• We present a new algorithm – and its implemen-
tation – that combines the essential ideas of the
Triangular Expansion and the sweep line algo-
rithm of Löffler et al.

• Additionally, we provide an exact and efficient
implementation of the sweep line algorithm of
Löffler et al., which we extended to handle view-
points placed arbitrary above the terrain.

• We report on an experimental evaluation of the
implementations.

• All implementations will be published as part of
the upcoming visibility package of CGAL.

2 Related Algorithms

In this section we review the Triangular Expansion
algorithm [4] and the sweep line algorithm for mul-
tiple viewpoints in its improved version by Löffler et
al. [13]. We incorporate ideas from both algorithms
into the new triangular sweep algorithm presented in
Section 3.

2.1 Triangular Expansion [4]

The algorithm computes the visibility polygon in
O(nh) time, where h is the number of holes of the
input polygon P . Thus, for terrains the running time
is linear.

The algorithm first triangulates the polygon in a
preprocessing step and uses the computed triangu-
lation1 to achieve better query times. For a query
point p, the triangle that contains p is located and
from there on, the algorithm proceeds in a recursive
manner. It tries to expand the view through every
edge of the triangle into the next one. Initially, both
endpoints of an edge e restrict the view and the neigh-
boring triangle ∆ is entered through e. Then, the view
can be restricted further by vertices of P . The algo-
rithm recurses through one or both of the other edges
of ∆, depending on whether only one or both of them
are seen, respectively.

See Figure 2 for an illustration. Seen from q the
vertex v is between ` and r, thus both edges e` and
er must be considered: e` is a boundary edge and the
algorithm reports edges ``′ and `′v; er is not a bound-
ary edge, which implies that the recursion continues
with v being the vertex that now restricts the left side
of the view.

The processing of the queries often run in sublinear
time because only the triangles that are seen by the
query point p are processed.

1We use a constraint Delaunay triangulation.

q

r

`

a

b

v

`′

e
∆

P

e`

er

Figure 2: Triangular Expansion algorithm; recursion enter-
ing triangle ∆ through edge e. [4]

2.2 Sweep by Löffler et al. [13]

The algorithm computes the visibility map in three
steps. It sweeps the terrain from left to right and
computes the left-visibility map. The left-visibility
map is defined as all the points on the terrain that
are seen from a viewpoint to their left. The right-
visibility map is analogously defined, and computed
with a sweep from right to left. Afterwards both maps
are merged. For n vertices and m viewpoints, this
takes O(n+m logm) time. We now discuss the sweep
from left to right.

Definition 2.1 A viewpoint p1 dominates another
viewpoint p2 at a given x-coordinate x if for all p ∈ T
with px ≥ x it holds that if p2 sees p, then p1 also
sees p.

The following corollary follows from the order claim
by Ben-Moshe et al. (Claim 2.1 in [2]):

Corollary 2.1 (Corollary 1 in [13]) Let q ∈ T be
a point visible from viewpoints pi and pj , with pi to
the left of pj . For any w ∈ T to the right of q, if pi
does not see w, then pj does not see w either (i.e., pi
dominates pj at qx).

The main idea is to keep track of the changes be-
tween visible and not visible while sweeping the ter-
rain, taking advantage of the fact that it is not re-
quired to know which points of T are seen by which
viewpoint. The status of the sweep line is an ordered
set L of shadow rays corresponding to a set of view-
points that are not visible at the moment; see Fig-
ure 3. Every time two rays intersect, only the one
with the corresponding viewpoint more to left is rele-
vant for the rest of the algorithm – the other viewpoint
is dominated from that point on (see Corollary 2 in
[13]). If the terrain is currently seen, in addition, the
leftmost viewpoint that currently sees the intersection
of the sweep line and the terrain is stored.

The set of all event points is comprised of all the
vertices and all the intersections between rays. Dur-
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ri

rj

pi

pj
s

Figure 3: Sweep line algorithm; at the intersection point s,
the viewpoint pj will be dominated by pi. The corresponding
ray rj can be simply deleted from the status of the sweep line.
The left-visibility map w.r.t. the current sweep line is shown
in blue.

ing the sweep, the current edge is tested for an in-
tersection with the currently lowermost ray in L to
determine when a viewpoint becomes visible again.

3 Triangular Sweep

This algorithm combines the ideas of the two algo-
rithms described in Section 2. It sweeps the terrain
essentially the same way as the sweep line algorithm
by Löffler et al. does. Specifically, it also performs a
sweep for each direction and a subsequent merge step.
However, the algorithm only starts with an approxi-
mation of the terrain and refines it when necessary.

In a preprocessing step a constraint Delaunay tri-
angulation is computed, with the terrain edges be-
ing the constraint edges. This is only done once and
only requires O(n) space. A query then starts with
a very rough estimation of the terrain, namely the
upper part of the convex hull, which can be easily ob-
tained from the triangulation. At first, the algorithm
only considers the convex hull edges above the terrain
and processes them from left to right (left sweep), i.e.,
they are kept on a stack with the leftmost edge be-
ing the top edge. If a new viewpoint is in between
the endpoints of an edge or if a shadow ray inter-
sects the edge, the algorithm refines the terrain and
replaces the edge with the two edges below; see Figure
4. Constraint edges are ordinary terrain edges and are
handled as such.

With this approach large portions of the terrain
that are not seen are skipped, without the need to
process every single edge of the terrain. This is worth-
while for m � n, especially for the particular case
when m = 1, which is useful when one wants to know
the visibility map of each single viewpoint for a set of
viewpoints.

The terrain is refined at most O(n) times and each
refine step takes only constant time. Thus, the al-
gorithm has the same worst-case running time of
O(n+m logm) as the sweep by Löffler et el.

rei
ej

p

e

Figure 4: Triangular Sweep; light blue edges are currently
on the stack. Edge e is on top and processed next. Ray r
intersects edge e, thus e will be replaced by ei and ej . Edge
ei will be on top and will be handled next.

4 Experiments

In this section we compare the implementation of
the Triangular Sweep with the implementation of the
sweep of Löffler et al. [13]. We also compare with the
implementations [4] of the Triangular Expansion algo-
rithm and the algorithm by Joe and Simpson. As both
algorithms are for polygons we converted the terrain
to a simple polygon and only measured the time to
compute the visibility polygon, i.e., we did not mea-
sure the subsequent conversion to a visibility map. All
algorithms are implemented in C++, and are part of
the upcoming visibility package of CGAL. As such,
all follow the exact geometric computing paradigm.

We have two different scenarios: 1. Single View-
points – for some applications the visibility region for
each single viewpoint is of interest; see the Integer
Program in [6] for example. For this scenario, we
used every vertex of a terrain as a separate query.
Thus, for a terrain with 1,000 vertices, 1,000 queries
were run. 2. Multiple Viewpoints – computing the
visibility map for a whole set of viewpoints. That is,
we randomly chose a specific percentage of vertices as
viewpoints.

We tested two types of terrains, which are depicted
in Figure 5 and Figure 6. For the benchmarks we used
instances ranging from 100 up to 1,000,000 vertices.

The experiments were run on an Intel Core i5-
3210M CPU at 2.5GHz with 3 MB cache and 16 GB
main memory running a 64-bit Ubuntu 14.04 LTS op-
erating system. The code was compiled with gcc 4.8.2.

Figure 5: Random-Walk instance with 1,000 vertices.

For the first scenario, depicted in Figure 7, we
can observe that the preprocessing of the two trian-
gular approaches pays off on larger instances. The
difference between the normal sweep and the Trian-
gular Sweep is more than two orders of magnitude
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Figure 6: Parabola-Walk instance with 1,000 vertices.
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Figure 7: Results for m = 1. The average time per
query is shown.
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Figure 8: Results for m ≥ 1 with an instance size
of 1,000,000 vertices. A percentage of vertices was
chosen at random as viewpoints. The first entry cor-
responds to exactly one vertex. The results are aver-
aged over 20 different Random-Walk and 20 different
Parabola-Walk instances.

for Random-Walk instances of size 105 and still more
than one order magnitude for the Parabola-Walk in-
stances.

However, for the second scenario (shown in Fig-
ure 8) the Triangular Sweep becomes slower at some
point. By choosing 1% of the vertices at random as
viewpoints, the resulting visibility map already cov-
ered roughly 12.5% of the terrain, 10% covered more
than 50% and at the peek at 40% viewpoints the vis-
ibility map covered around 95% of the terrain. As
a result, the additional overhead of maintaining the
triangulation edges on the stack outweighed the gain
of skipping the unseen terrain parts. Additionally,
the cost to maintain the lowermost ray increases with

more viewpoints, however, it is not affected at all by
the Triangular Sweep.

The drop in runtime at the end is due to two facts;
(i) The complexity of the visibility map decreases at
some point (we store the projected intervals on the
x-axis, i.e., only one interval is stored in case the
whole terrain is seen). (ii) The maximum number
of simultaneous events in the event queue decreases
and drops down to 1 when every vertex is also a view-
point. Thus, insertions into the queue can be done
even without any geometric comparisons at all.

References

[1] B. Aronov, L. J. Guibas, M. Teichmann, and
L. Zhang. Visibility queries and maintenance in
simple polygons. Discrete & Comp. Geometry,
27(4):461–483, 2002.

[2] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A
Constant-Factor Approximation Algorithm for Op-
timal 1.5D Terrain Guarding. SIAM J. Comput.,
36(6):1631–1647, 2007.

[3] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility
queries in simple polygons. Comput. Geom. Theory
Appl., 23(3):313–335, 2002.

[4] F. Bungiu, M. Hemmer, J. Hershberger, K. Huang,
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[11] F. Hurtado, M. Löffler, I. Matos, V. Sacristan,
M. Saumell, R. I. Silveira, and F. Staals. Terrain
Visibility with Multiple Viewpoints. In L. Cai, S.-W.
Cheng, and T. W. Lam, editors, ISAAC, volume 8283
of LNCS, pages 317–327. Springer, 2013.

[12] B. Joe and R. B. Simpson. Corrections to Lee’s Visi-
bility Polygon Algorithm. BIT, 27(4):458–473, 1987.
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Experiments on Parallel Polygon Triangulation Using Ear Clipping

Günther Eder∗ Martin Held∗ Peter Palfrader∗

Abstract

We present an experimental study of different strate-
gies for triangulating polygons in parallel. As usual,
we call three consecutive vertices of a polygon an ear
if the triangle that is spanned by them is completely
inside of the polygon. Extensive tests on thousands of
sample polygons indicate that most polygons have a
linear number of ears. This experimental result sug-
gests that polygon-triangulation algorithms based on
ear clipping might be well-suited for parallelization.

We discuss three different on-core approaches to
parallelizing ear clipping and report on our experi-
mental findings. Extensive tests show that the most
promising method achieves a speedup by a factor of
roughly k on a machine with k cores.

1 Introduction

An ear of a planar simple polygon P is formed by three
consecutive vertices (vi−1, vi, vi+1) if the open line
segment vi−1, vi+1 is completely contained in the in-
terior of P (see Fig. 1). It is well-known [2] that (vi−1,
vi, vi+1) form an ear of P if and only if (i) vi is convex,
and (ii) the closure of the triangle ∆(vi−1, vi, vi+1)
does not contain any reflex vertex of P (except possi-
bly vi−1 or vi+1). Hence, if (vi−1, vi, vi+1) is an ear of
P then the line segment vi−1, vi+1 forms a diagonal
of P . Clipping this ear by inserting this diagonal cuts
off the vertex vi, the “base” of the ear, thus reducing
the number of vertices of P by one.

The basic idea of ear clipping is to iteratively cut off
ears until the polygon has shrunk to a triangle. The
algorithm’s correctness hinges upon Meisters’ two-
ears theorem which states that every simple polygon
with four or more vertices has at least two non-over-
lapping ears [4].

Typically, an implementation of an ear-clipping al-
gorithm will operate in two phases. Classification:
Iterate along the contour of P to determine all in-
stances of three consecutive vertices that form an ear
of P . All potential ears are stored in a queue. Clip-
ping: Iteratively pick an ear from the queue and clip
it. As an ear (vi, vj , vk) is clipped and stored in a tri-
angle list, its two outer vertices vi and vk have to be

∗Universität Salzburg, FB Computerwissenschaften,
5020 Salzburg, Austria; supported by Austrian Sci-
ence Fund (FWF) Grant P25816-N15; {geder,held,
palfrader}@cosy.sbg.ac.at.

checked whether they form the bases of new ears after
the clipping of (vi, vj , vk). Every newly found ear is
added to the queue. Note that the queue may contain
candidate ears which are no longer part of the poly-
gon. The process ends for an n-vertex input polygon
P when n − 3 ears have been clipped and, thus, the
triangle list together with the final triangle forms a
complete triangulation of P .

Ear clipping forms the basis of the FIST triangula-
tion algorithm and ANSI-C implementation, Held’s
fast industrial-strength triangulation tool [2]. Key
features of FIST include speed and robustness. While
the basic ear-clipping algorithm has an O(n2) worst-
case complexity, FIST employs multi-level geometric
hashing to speed up the computation to near-linear
time for almost all (real-world and contrived) inputs.
Extensive tests [3] showed that FIST’s careful en-
gineering allows it to run flawlessly on a standard
floating-point arithmetic.

Ear clipping is, ostensibly, limited to triangulat-
ing simple polygons. FIST, however, also handles
polygons with holes by converting them in a pre-
processing step: so-called bridges are inserted to con-
nect all hole polygons directly or indirectly to the
outer boundary polygon, turning a polygon with holes
into one (slightly degenerate) simple polygon, which
can then be triangulated using ear clipping.

vi+1

vi

vi−1

vi−1vi+1

(a)

vi+1

vi

vi−1

vi vr

(b)

Figure 1: (a) An ear defined by the vertices
vi−1, vi, vi+1 where vi is convex; (b) A reflex vertex
vr violates the second condition.

2 Prior Work

Surprisingly little work has been done on parallel tri-
angulations. The literature focuses mostly on (Delau-
nay) triangulations of point sets rather than polygons,
see for instance Rong et al. [6] and Xin et al. [8].

In 2013, Qi et al. [5] introduced a primarily GPU-
based algorithm to compute constrained Delaunay tri-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: The repair process used in the divide and conquer algorithm.

angulations. In a first step they compute a Voronoi
diagram, i.e., the dual of the Delaunay triangulation.
Constraints are then added to obtain the constrained
Delaunay triangulation (CDT). Their approach scales
well on the GPU and seems to be the currently best
solution if an NVIDIA GPU is available.

3 Our Contribution

We study the prevalence of ears in our vast set of test
data (see Sec. 5) and find that, on average, about half
of all vertices of a given polygon form the bases of
ears. If we look only at convex vertices then a vast
majority (98 %) of them belong to ears. This is signifi-
cantly more than the two ears guaranteed by Meisters’
theorem [4] and, hence, suggests that clipping many
ears simultaneously is feasible.

We therefore extend the classic FIST ear-clipping
algorithm such that it can operate in parallel. We
present three particular variants: a divide-and-
conquer algorithm, an algorithm that uses a partition-
ing of the contour and a mark-and-cut approach. All
algorithms were implemented within the FIST frame-
work and compared to the conventional FIST.

4 Parallel Ear-Clipping Algorithms

In the sequential version of FIST, on average, about
80 % of the time is spent for classification and clipping
of the ears, while only approximately 20 % is spent
on preprocessing, such as data cleaning and bridge
finding to convert polygons with holes into degener-
ate (weakly-)simple polygons. We therefore concen-
trate our parallelization efforts on the classification
and clipping phases.

4.1 Divide and Conquer

The basic idea is to split the polygon into as many
sub-polygons as CPU cores are available. All sub-
polygons shall have roughly the same number of ver-
tices. Since it seems costly to determine suitable diag-
onals that achieve balanced splits, we simply use ver-
tical lines to split the polygon. Using the Sutherland-
Hodgman algorithm [7], we can split a polygon along
a line ` in time O(n), at a cost of at most O(n) Steiner

points given by the number of intersections between `
and the edges of the polygon. (In practice, the num-
ber of Steiner points seems to be bounded by

√
n for

almost all but contrived inputs.)

We then run one (sequential) FIST instance per
core to obtain a triangulation of each sub-polygon. A
concatenation of the triangulations of all sub-polygons
yields a triangulation of P , albeit with Steiner points
which have to be removed.

Consider a pair of consecutive Steiner points sa and
sb. We remove them and all their incident triangles,
and we repair the contour by re-joining vertices that
were adjacent previously. The removal of incident tri-
angles leaves a hole H which forms a “double star-
shaped” polygon, where every point of H is visible
from at least one of the Steiner points sa and sb, see
Fig. 2b.

Using sa as start vertex, we walk counter-clockwise
along the boundary of H. If we find a vertex that is
not visible from sa, then we store the preceding vertex
as p. If all vertices are visible, then we stop the test
when we reach the second Steiner point sb and store
the last vertex before sb as p. Then we start the same
search clockwise, starting again at sa, and obtain q.

We divide H into two star-shaped polygons H1, H2

by adding the diagonal pq. Each of them has one of
the original Steiner points in its nucleus, see Fig. 2c.
Now every triangle based at a convex vertex of H1

and H2 forms an ear as long as it does not contain
either sa or sb. Hence, both holes can be triangulated
easily.

4.2 Partition and Cut

In this approach, we use the sequential classification
step to partition the contour of the polygon into k
different sets. We choose k to correspond to the num-
ber of cores we want to run on. The sequential FIST
walks along the polygon, tests each vertex triple for
its ear property, and stores all ears in one queue. To
parallelize, we set the number of queues equal to k and
split the polygon into k polygonal chains with roughly
n/k many vertices each. Additionally, we memorize k
contour vertices between the chains. These corner
vertices are important for the parallel clipping to en-
sure that no thread oversteps its partition boundaries;
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Figure 3: (a) A simple polygon P already partitioned into four chains. (b) The four corner vertices are highlighted.
(c) A partition-and-cut triangulation.

see Fig. 3b.
In the parallel clipping phase, each thread processes

all ears from its queue. As usual, clipping the ear
(vi−1, vi, vi+1) involves checking whether vi±1 has be-
come the basis of a new ear. If so, and if vi±1 is no
corner vertex, then vi±1 is added to the queue.

After all k queues are empty, the parallel clipping
phase is completed. Now we finish the triangulation
with a sequential run of FIST. This will remove the
remaining vertices from our polygon.

4.3 Mark and Cut

This algorithm builds on the fact that every second
ear along the polygon’s contour is non-overlapping.
Hence, we can mark those ears and clip them imme-
diately without conflicts. We only need one additional
data structure, namely an array A to store the indices
of all marked ears.

In the mark phase, we walk along the polygon once
and store the index of every other vertex in A. Ad-
ditionally we only take convex vertices and add flags
to check if a triangle has already been checked for its
ear-property. In the cut phase, we check for each ver-
tex vi in A whether (vi−1, vi, vi+1) forms an ear. If so,
we clip this ear and store the triangle ∆(vi−1, vi, vi+1)
in the triangle array at position i. Since we consid-
ered only every other vertex, ears that we find cannot
overlap.

Every ear can be clipped only once and for every
clipped ear only one vertex is removed from the poly-
gon. Thus, we can use the index i of a removed vertex
vi as an index for the stored triangle and avoid any
collisions.

The algorithm is designed to work in parallel with-
out locks or atomics. Initially, we start the mark
phase and mark the first half of the contour as de-
scribed above. Then we let all threads but one run
through the first half of the array A in parallel and
check each vertex (cut phase). The remaining thread
marks the second half of the contour and stores the
vertex indices in the second half of A. After all
threads are finished, the procedure starts again with

marking the first half of the remaining contour and
cutting the vertices stored in the second half of A and
so on.

Once only a low number of new triangles can be
generated in a cut phase, we run the sequential version
of FIST on the remaining polygon.

5 Experimental Results

We implemented the parallel variants of FIST as an
on-core parallelization by the use of OpenMP/C++.

Our test system runs CentOS 6.5 on an 2014 Intel
Xeon E5-2667 v3 CPU at 3.20 GHz with 8 cores and
132 GB RAM.

Our implementations were tested on about twenty
thousand polygons with up to four million vertices
per input, consisting of both real-world and contrived
data of different characteristics, including CAD/CAM
designs, printed-circuit board layouts, geographic
maps, closed fractal and space filling curves, star-
shaped and random polygons generated by RPG [1],
as well as sampled spline curves and font outlines.
Some datasets contain circular arcs, which we ap-
proximated by polygonal chains in a preprocessing
step. Similarly, we used the standard (sequential)
FIST to convert all multiply-connected polygonal ar-
eas to (slightly degenerate) simple polygons by insert-
ing bridges.

In our tests, we compare the runtime of our parallel
algorithms to the runtime of the conventional sequen-
tial FIST. The plots of Fig. 4 show the speedups that
we achieved.

We observe the overall best result for the mark-and-
cut algorithm (Fig. 4c), with an average speedup of
8 when using eight cores or 4 when using four cores.
In any case, parallelization seems to pay off once the
input polygon has at least about fifteen thousand ver-
tices. Some test sets yield a speedup of over k while
employing k cores. This is a result of the different
storage structure used in the sequential version of
FIST.

Tests on other systems with up to 64 cores did not
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Figure 4: Speedup of parallelization approaches as a function of input size. In (a), (b), and (c) we see speedups for
different numbers of threads. For the divide-and-conquer approach this is the same as the number of sub-polygons
used.

scale as well as presumed. However, those systems
were multi-CPU systems which seem to behave dif-
ferently than the multi-core system which we used,
for reasons not yet fully understood.

Summarizing, we present experimental evidence
that an algorithm for triangulating polygons based
on ear clipping can be parallelized for efficient execu-
tion on multi-core computers. Since current personal
computers are equipped with quad-core processors,
the triangulation of a polygon can be accomplished
about four times as fast with our parallel variants of
FIST in most cases.
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Kinetic Conflict-Free Coloring∗
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Abstract

A conflict-free coloring, or CF-coloring for short, of a
set P of points in the plane with respect to disks is a
coloring of the points of P with the following property:
for any disk D containing at least one point of P there
is a point p ∈ P ∩D so that no other point q ∈ P ∩D
has the same color as p. In this paper we study the
problem of maintaining such a CF-coloring when the
points in P move. We present two methods for this
and evaluate the maximum number of colors used as
well as the number of recolorings, both in theory and
experimentally.

1 Introduction

Wireless communication is commonplace in many ap-
plications, varying from mobile consumer devices like
cell-phones to specialized networks for autonomous
robots. For clear wireless communication it is impor-
tant to avoid interference. In general interference-free
communication is achieved by using different frequen-
cies for different communication channels. However,
the number of available frequency ranges is limited so
it is impossible to assign a unique frequency to every
communication channel. A more clever frequency-
assignment scheme is therefore needed. Finding a
proper assignment of frequencies is often modeled as
the problem of computing a so-called conflict-free col-
oring, or CF-coloring for short, where different colors
represent different frequencies.

In this paper we look at the problem of finding a
CF-coloring with respect to disks for a set P of points
in the plane. That is, we want to assign colors to the
points of P so that every disk D containing at least
one point of P contains a unique color. More formally,
we want to assign a color color(p) to each point p ∈ P
so that the following property holds: for every disk D
containing at least one point of P , there is a point
p ∈ P ∩ D so that for any point q ∈ P ∩ D\{p} we
have color(p) 6= color(q). It is convenient to identify
the i-th color with the integer i. The goal is then to
minimize the maximum color used in the CF-coloring.
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The problem was introduced by Even et al. [5] who
provide a framework for finding CF-colorings with
respect to disks and several other types of regions.
Their algorithm works by finding independent sets on
a sequence of Delaunay triangulations of subsets of P
and uses O(log n) colors, which is asymptotically op-
timal [5, 7]. Several variants of the problem have also
been studied. For example, Har-Peled et al. [6] pro-
vide a probabilistic algorithm that works for simple
regions with low union-complexity, as well as several
algorithms for special cases such as axis-aligned rect-
angles. They also study k-CF-coloring, which is a re-
laxation of a regular CF-coloring. In a k-CF-coloring
each region need not contain a unique color, but in-
stead a color that occurs between 1 and k times in that
region. There are also several results for online CF-
coloring, where points are added incrementally and
must be assigned a color when added without knowl-
edge of points to come [2, 4]. Additional background
can be found in a recent survey by Smorodinsky [8].

All these papers assume the transmitters are sta-
tionary and frequencies are assigned exactly once.
This may however not always be the case. For
mobile RFID scanners or networks of autonomous
robots, for example, the frequency assignment may
need to change as the transmitters move. Unfortu-
nately changing the frequency of a transmitter is of-
ten undesirable as it may interrupt current communi-
cations with that transmitter. This leads us to study
the problem maintaining a conflict-free coloring in the
so called Kinetic Data Structures (KDS) framework.

Following the KDS framework as introduced by
Basch et al. [3] we assume that we know the trajec-
tories of the points (at least in the short term). The
goal is now to maintain a CF-coloring of the points as
they move along these trajectories. In frequency as-
signment, changing the frequency of a transmitter is
usually expensive. Therefore, we focus on keeping the
number of recolorings low while using O(log n) colors.
We provide two algorithms for this, both based on
the algorithm by Even et al. [5]. For both algorithms
we provide a theoretical analysis and an experimental
analysis of the maximum number of colors used and
of the number of recolorings.

2 The algorithms

First we describe the algorithm by Even et al. [5]
for static points in more detail, as our kinetic algo-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
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rithms are based on this. The algorithm is recursive
and starts by computing the Delaunay triangulation
DT (P1) of the complete point set P1 := P . The next
step is to find a large independent set I1 ⊂ P1 in
DT (P1). All points in I1 receive color 1. On the
set P2 := P1\I1 a new Delaunay triangulation and
independent set I2 are computed, then the points in
I2 receive color 2, and the algorithm proceeds with
P3 := P2\I2. This process is repeated until all points
are colored. If we compute the independent set in each
DT (Pi) in a greedy manner, by considering the points
in order of increasing degree, we can guarantee that
|Ii| > |Pi|/6, which implies that the algorithm finishes
after O(log n) rounds. The proof that this procedure
produces a conflict-free coloring was given—in a more
general setting—by Even et al. [5].

Next we adapt the static algorithm to a kinetic
setting where points move along known constant-
complexity curves. From the above it is clear that as
long as none of the Delaunay triangulations change,
then the coloring remains conflict-free. However,
as the points move the Delaunay triangulation can
change, namely when four points that form a quadran-
gle in the Delaunay triangulation become co-circular.
When this happens a diagonal of the quadrangle flips,
which may invalidate the independent set. Under
known motions these co-circularities are not difficult
to detect and kinetic data structures exist that main-
tain a Delaunay triangulation and support insertion
and deletion of vertices [1]. Therefore we focus on re-
pairing the independent sets when such a flip occurs.
We propose two different methods, a greedy method
and a lazy method.

In the following we describe what the two methods
do when a flip occurs between vertices within a quad-
rangle Q := Q(p, q, r, s), where the edge pr is replaced
by qs. The quadrangle Q may exist in the Delaunay
triangulation of multiple consecutive levels, but only
in the last level i where it occurs can one or more of
the points p, q, r, s be in the independent set. This
follows from the fact that a point in the independent
set of level i cannot occur in any level j > i. We de-
note this level by lev(Q) and use k to denote the total
number of colors used before recovering.

Lazy updates. In the lazy approach we check if the
new edge connects two points in the independent set,
thus making the set no longer independent. If so, we
recolor one of the two conflicting vertices to a new
color. As a result the independent set of each layer
will slowly become smaller compared to the total num-
ber of points in that layer. When the independent
set becomes too small, we completely recompute the
structure from that layer onward.

In more detail, let Q := Q(p, q, r, s) denote the
quadrangle within which the flip occurred, where edge

pr is replaced by qs. Let i := lev(Q). When the edge
pr flips to edge qs, we check if q and s are both in the
independent set Ii. If so, we remove one of the two,
say q, from Ii, give it a new color k + 1 and add it to
all sets Pj for i < j 6 k+1. Note that any two points
that were independent in DT (Pj) are still indepen-
dent in DT (Pj ∪ {q}). Since we reduced Ii in size we
check if it has become too small. More precisely, we
check if |Ii| < |Pi|/12, and if so we recolor Pi entirely
by running the static algorithm on Pi. We call this a
reset at level i. If we do not do a reset at level i, we
check if |Ij | < |Pj |/12 for some j > i. (This is needed
since we added q to all sets Pj for i < j 6 k + 1.) If
this is the case for some levels j, we do a reset at the
smallest such level j.

Lemma 1 Maintaining a CF-coloring with lazy up-
dates ensures that we use at most O(log n) colors at
any time.

Proof. Each update guarantees that the sets Ii are
independent. Following the proof of Even et al. [5]
this is enough to enough to show the coloring remain
conflict-free. Since we guarantee that each indepen-
dent set Ii contains at least |Pi|/12 points at any time,
O(log n) colors are used. �

Our goal is to guarantee a CF-coloring using as few
recolorings as possible. Therefore, we now study the
number of recolorings that this method makes. It is
easy to see that a single flip in a Delaunay triangu-
lation may cause Θ(n) recolorings: if a flip triggers a
reset of the first level, then all points may be recol-
ored. However, this does not happen often since our
greedy independent-set computation guarantees that
initially |Ii| > |Pi|/6, whereas we won’t reset until
|Ii| < |Pi|/12. Most events—that is, flips in the De-
launay triangulation—do not cause many recolorings
and we can in fact prove that amortized only O(log n)
recolorings happen per event.

Lemma 2 Each event triggers O(log n) recolorings
amortized.

Proof. We prove this using an accounting scheme,
where each point p has a wallet Wi(p) with a certain
amount of money, for every level i where it occurs.
To recolor a point it must pay e1. Thus, when doing
a reset at level i, all points in Pi must pay e1. Next
we show that in each event we have to spend only
O(log n) euro to guarantee we can pay for all recol-
orings. We keep as an invariant that any point p in
every level i where it occurs has at least

1− |Ii| − |Pi|/12

|Pi|/12
= 2− 12|Ii|

|Pi|
euros

in its wallet Wi(p). Note that since |Ii| > |Pi|/6 after
a reset at level i, the points need not have any money
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immediately after a reset. Moreover, a reset occurs
when |Ii| < |Pi|/12, so then each point has at least
e1 and can pay for its recoloring.

Next we show we need to spend no more than
O(log n) euro per event to maintain the invariant.
Consider an event that causes point q to be removed
from the independent set Ii and added to a new level
Pk+1. The wallets for points in levels j < i do not
change as the set Pj and Ij do not change. In level i
the size of Pi remains the same, but Ii becomes one
smaller. Let Ii and Pi denote the independent set and
complete set of points in level i before the event and
I ′i and P ′i the same sets after the event. Before the
event we know that each point p ∈ Pi has at least
2− 12|Ii|/|Pi| euro. After the event it should have at
least 2 − 12|I ′i|/|P ′i | = 2 − 12(|Ii| − 1)/|Pi| euro. To
ensure this we must give each point at most 12/|Pi|
euro, so at most e12 in total for all points in level i.

The money to be payed to levels j > i is calculated
as follows. Before the event each point in level j has
at least 2−12|Ij |/|Pj | euro and after the event it must
have at least 2 − 12|Ij |/(|Pj | + 1) euro. This means
we should pay each point in Pj (not including q)

12|Ij |
|Pj |

− 12|Ij |
|Pj |+ 1

=
12|Ij |

|Pj |(|Pj |+ 1)
6 12

|Pj |+ 1
euro.

Since we have to pay this to |Pj | points, this costs us
no more than e12 per level. Lastly we have not yet
filled the wallet for the point q in all the levels it has
been added to. However, in each level it requires at
most e1. In total we spend no more than e13 per
level, so O(log n) euro in total. �

Greedy updates. In the lazy approach we do
O(log n) recolorings amortized per event, but in some
updates we may have to recolor all points. We can
try to avoid this worst-case behavior by keeping the
independent sets large. To this end, at each event
we not only remove a point from an independent set,
but we also try to add new points. We maintain as an
invariant that each independent set is a maximal inde-
pendent set consisting only of points with degree less
than 12. This produces an independent set Ii with
|Ii| > |Pi|/24, as at least half the vertices have de-
gree less than 12 and choosing one of these eliminates
no more than 12 from becoming part of the indepen-
dent set. Next we discuss the updates necessary to
maintain this invariant.

Consider an event that is a flip within quadran-
gle Q := Q(p, q, r, s), where the edge pr is replaced
by edge qs. We denote by lev∗(Q) the first level
(that is, with smallest index i) where this flip occurs.
When processing the event we start at lev∗(Q) and
then proceed to later levels. In each level we have
the following situation. We have a current set Pi
with Delaunay triangulation DT (Pi) and two (pos-
sibly empty) sets P+

i and P−i . The set P+
i contains

points that are “pushed down” from the parent level
because they are no longer in the independent set at
that level; the set P−i contains points that are “pulled
up” from the parent level because they have just been
added to the independent set at the parent level. We
then update the Delaunay triangulation by construct-
ingDT ((Pi∪P+

i )\P−i ), update the independent set Ii,
and construct the sets P+

i+1 and P−i+1 by looking at the
differences between old and new independent set Ii.

In more detail we proceed as follows. We start
by computing DT ((Pi ∪ P+

i ) \ P−i ). Note that for
i = lev∗(Q) we have P+

i = P−i = ∅, but the Delau-
nay triangulation still changes because of the flip in Q.
Let P ∗i denote the set of points whose neighbor set has
changed, including the set P+

i of new points. Now for
the points in P ∗i ∩ Ii we test if they still have degree
below 12, otherwise we remove them from Ii. Then
we check if any two vertices remaining in the indepen-
dent set are connected, and we remove one of them if
needed. We repeat this until no more connected pairs
exist, and we have obtained an independent set for
the new Delaunay triangulation. Next we make the
independent set maximal by greedily adding points
with degree less than 12 that are not connected to
any points of the independent set. The resulting set
is the new independent set Ii. As already mentioned,
we then construct the sets P+

i+1 and P−i+1 by looking at
the differences between old and new independent set
Ii. Note that the sets P+

i and P−i (and, hence, the set
P ∗i of “affected points”) may grow as we go down the
levels. Unfortunately it seems hard to prevent this,
which makes it difficult to bound the worst-case num-
ber of recolorings. Fortunately our experiments (see
below) show that in practice the avalanche effect is
limited and not too many recolorings occur per event.

3 Experimental results

We showed some basic theoretical bounds for the
number of recolorings. However, especially for the
greedy approach it seems unlikely that in practice we
need many recolorings per step. We therefore imple-
mented both algorithms in order to count the number
of recolorings. For our input we use sets of points
that move along straight lines within a bounding box.
To avoid points going outside the bounding box, they
bounce back when hitting the edge of bounding box.
We ran our implementation of the two methods for
sets of moving points ranging from 20 to 2000 points
and measure the number of recolorings per step as well
as the total number of colors used. For 100 points the
results can be found in Fig. 1. The results with other
amounts of points are summarized in Table 1 and are
based on a run of 10,000 events—that is, flips in any
of the Delaunay graphs.

The graphs of Fig. 1 clearly show the difference be-
tween the two methods. The lazy method has a very
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Figure 5.1: Examples of the number of recolorings (red) and the number of colors (green)
during 2500 events. Upper left: Bounded IS algorithm with 100 points. Upper right:
Bounded IS algorithm with 1000 points. In both the Bounded IS graphs the reset size appears
to ascend until the reset of the first layer. Lower left: Maximal IS algorithm with 100 points.
Lower right: Maximal IS algorithm with 1000 points.

Figure 5.1 shows some examples of the progression of the number of colors and number
of recolorings during these experiments, and Tables 5.1 and 5.2 show the results of these
experiments.

One interesting pattern in the figures is the “staircase e↵ect” that appears during the
Bounded IS algorithm. Namely, the recoloring spikes seem to get bigger and bigger towards
the end of the graph. In fact, for two subsequent layers Li and Li+1, we have that Li+1 tends
to reset shortly before Li resets. The reason that this occurs is that Li+1 is “almost” the size
of Li, so its bounds break shortly before Li’s bounds break. This means we expect a slightly
smaller spike shortly before a large spike, which gives us these increasing reset sizes. After a
reset of the first layer we expect the spikes to start small again.

It is of course a bit wasteful to have a layer Li+1 recolor shortly before Li, since it means
most of the points in Li are recolored twice in a row, and if Li would have broken its bounds
before Li+1 then Li+1 would not have to recolor again for a while.

Figure 5.2 shows the average and maximum number of colors plotted against log n. The
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Figure 1: Number of recolorings indicated in red and total number of colors used in green for the lazy (left) and
greedy (right) method. Both are measured from an instance with 100 moving points.
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Figure 1: Number of recolorings indicated in red and total number of colors used in green for the lazy (left) and
greedy (right) method. Both are measured from an instance with 100 moving points over 2500 events.

Lazy Updates Greedy Updates
#Colors #Recolorings #Colors #Recolorings

n avg max avg
logn

max
logn total max avg max avg

logn
max
logn total max

20 12.4 15 2.9 3.5 1232 20 8.2 10 1.9 2.3 6414 12
50 17.2 22 3.0 3.8 1569 50 11.2 14 2.0 2.5 8036 19

100 20.9 28 3.1 4.2 2017 100 13.5 16 2.0 2.4 9834 24
200 24.6 31 3.2 4.1 2275 200 15.9 18 2.1 2.4 12034 27
500 28.3 35 3.2 3.9 2879 337 19.1 21 2.1 2.3 15248 34

1000 31.3 38 3.1 3.8 4064 444 21.3 23 2.1 2.3 18406 62
2000 34.0 42 3.1 3.8 5659 696 23.5 25 2.1 2.3 22164 60

Table 1: Number of colors used and recolorings for n moving points using lazy and greedy updates.

low number of recolorings for most events, but several
events with a many recolorings that correspond to re-
sets at top levels of our data structure. This step-wise
behavior is also found in the total number of colors
used, which slowly goes up until a reset of one of the
top levels is done. The greedy approach on the other
hand does not have this spiky behavior, and instead
many events cause between 5 and 20 recolorings, but
rarely more than that. It also has the effect that the
total number of colors appears very stable.

In Table 1 we see that in both cases the number of
colors used is proportional to log n. What is interest-
ing though is that although the greedy method uses
less colors, both on average and maximum, it requires
many more recolorings on average. This shows that
the neither of the two methods is strictly better than
the other. If one can afford to do many recolorings ev-
ery now and then, and one does not care about using
a few more colors, then the lazy method is better as
it will do fewer recolorings. On the other hand, if the
goal is to keep the total number of colors very small
or to avoid many recolorings at a single event, then
the greedy method appears better.
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Kinetic Data Structures for Clipped Voronoi Computations

Duru Türkoğlu∗

Abstract

We consider the mesh refinement problem in the ki-
netic setting: given an input set of moving points, the
objective is to design a kinetic data structure (KDS)
for inserting additional so-called Steiner points so that
the resulting output set yields a quality triangulation.
Therefore, the selection of Steiner points plays a crui-
cial role, both in terms of the output itself and the
quality of the triangulation. Although many Steiner
point selection schemes have been devised, it is not
straightforward how to adapt them in the kinetic set-
ting; it may not even be possible to adapt some of
these schemes.

In this paper, we design a KDS by extending a
previously proposed query structure which has been
employed for Steiner point selection in the dynamic
setting. The key geometric property computed in
these structures is the clipped Voronoi cells, a lo-
cally restricted version of the standard Voroni cells.
Our KDS maintains these clipped Voronoi cells, where
each query takes constant time to compute as well as
to update. Hence, our KDS is responsive, and it is
efficient processing a constant number of events for
each query, and it is also local and compact.

1 Introduction

Mesh refinement is a fundamental step in scientific
computing, where the goal is to construct a qual-
ity triangulation of a given set of input points. For
most applications, a quality triangulation is one in
which the minimum angle of every triangle is above
some threshold. Until this quality criterion is satis-
fied, one needs to refine the trianguation by inserting
additional Steiner points into the output, taking care
to insert as few as possible. If the minimal output
that admits a quality triangulation has m points, any
output of size O(m) is regarded as size-optimal.

Over the past twenty years, research has provided
improved mesh refinement algorithms with theoreti-
cal guarantees. In chronological order, these guaran-
tees were quality [4], size-optimality [8], efficient run-
times [5, 6], and efficient dynamic updates [1], each
of them incorporating all of the previous guarantees.
And most recently, Acar et al. developed a KDS for
mesh refinement [2]. Their choice of Steiner points,
however, only allowed bounded quality triangulations.

∗Department of Computer Science, University of Chicago

Hence, mesh refinement problem in the kinetic setting
still remains open for higher quality triangulations.

In the kinetic setting, the objective of mesh refine-
ment is to maintain a set of moving Steiner points as
well as the triangulation of the output set comprising
input and Steiner points. Typically, algorithms used
in practice maintain the moving mesh by a series of
further refinements to fix low quality elements over
time, and by remeshing occasionally to bound the size
of the mesh. In this paper, we approach the problem
using the kinetic data structures (KDS) framework in-
troduced by Basch et al [3]. In this framework, the in-
put points are provided with algebraic trajectories of
constant degree and the computed geometric property
is certified by a set of certificates, some of which may
fail at a later time causing an event. Each event trig-
gers a kinetic update for repairing both the geometric
property itself and the set of certificates certifying it.
As the trajectories of the input points are known in
advance, the data structure maintains the desired ge-
ometric properties by processing these events in order
of their failure times. In this framework effectiveness
is measured by the following criteria: a KDS is called
responsive if the kinetic updates are fast in the worst
case, efficient if the number of events is small when
compared to the number of intrinsic changes the geo-
metric property has to go through in the worst case,
local if each input point is associated with a small
number of certificates, and compact if the total num-
ber of certificates and the size of the data structure is
small.

Within the KDS framework, Steiner point selection
becomes a hard problem; many that are suitable when
input points do not move are hard to adapt effec-
tively in the kinetic setting. One such example is the
quadtree method, where the corners of the quadtree
squares are inserted as Steiner points [4]. Another very
commonly used such example is the circumcenters of
low quality triangles [6, 8]. Aside from these very
common examples, Üngör defines a more local type
of Steiner points called off-centers [10], Hudson and
Türkoğlu propose a local region to pick Steiner points
from, a region called clipped Voronoi cells, one which
includes off-centers [7], and Acar et al. choose Steiner
points as geometric translations of input points at ge-
ometrically increasing distances [2]. In this paper, we
use the kinetic mesh of Acar et al. as a point location
structure and extend the clipped Voronoi computa-
tions of Hudson and Türkoğlu to the kinetic setting.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Our contribution in this paper is a first step to-
wards solving the kinetic mesh refinement problem
for achieving arbitrary quality triangulations. Build-
ing on the result of Hudson and Türkoğlu [7], we de-
sign a KDS for computing clipped Voronoi cells so
that a meshing algorithm can use it for picking Steiner
points to construct the output mesh. Given a point v,
our KDS provides the following procedures pertaining
to v: ApproximateNN(v) to compute an approxi-
mation of the distance from v to its nearest neigh-
bor, ClippedVoronoi(v, β) to compute the clipped
Voronoi cell of v, and AddVertex(p, v) to insert into
the output a Steiner point p near v. We prove in Theo-
rem 3 that all of the above procedures run in constant
time, create a constant number of certificates, and
hence can be updated in constant time upon a certifi-
cate failure. Our KDS reduces the problem of kinetic
mesh refinement of arbitrary quality to suitable choice
of Steiner points within local neighborhoods.

2 Definitions

In this section we provide preliminary definitions for
the rest of the paper. To distinguish mesh points from
any point in space we refer to mesh points as vertices.

Definition 1 Given a vertex v, NN(v) is the dis-
tance from v to its nearest neighbor, and Vor(v) is the
Voronoi cell of v consisting of all points x such that
for any vertex u 6= v, |ux| ≥ |vx|. Then v is called
ρ-well-spaced [9] if Vor(v) is inside the ball centered
at v with radius ρNN(v), and a mesh is called ρ-well-
spaced if every vertex in the mesh is ρ-well-spaced.

Using the fact that the dual of a Voronoi diagram
yields a Delaunay triangulation, one can observe that
well-spacedness is equivalent to large minimum angles
in the output triangulation; the lower the parame-
ter ρ, the larger the minimum angles.

Definition 2 [7] The β-clipped Voronoi cell of a ver-
tex v, Vorβ(v), is the intersection of Vor(v) and the
ball centered at v with radius βNN(v). For any point
x ∈ Vorβ(v), the ball centered at x with radius |vx|
is a witness1 ball empty of vertices, and the witness
region of Vorβ(v) is the union of witness balls.

Figure 1 depicts the above definitions of well-
spacedness, clipped Voronoi cells, witness balls and
witness regions.

Definition 3 [8] Given a point x in space, the lo-
cal feature size of x, lfs(x), is the distance from x to
its second-nearest input vertex, and a size-conforming
mesh is one in which for every output vertex v,

1The origial term used in [7] is “certificate”, however, we use
the term “witness” to avoid confusion with KDS certificates.

u5

v

u3

u2

u1

u4

5NN(v)

βNN(v)

Figure 1: A vertex v and its neighbors u1 through u5.
Farthest point in Vor(v) is at 5NN(v) distance, thus,
v is 5-well-spaced but not β-well-spaced. As a result,
Vorβ(v) is shown with a thick boundary and its wit-
ness balls and witness region with a thin boundary.

NN(v) ∈ Θ(lfs(v)); Ruppert proves that being size-
optimal is equivalent to being size-conforming.

Definition 4 A mesh refinement algorithm is
bottom-up if it incrementally ensures well-spacedness
of the vertices in the order of their local feature
size. For a given constant γ, a bottom-up algorithm
inserts a Steiner vertex u, when every mesh vertex v
with NN(v) < γNN(u) is ρ-well-spaced.

Our data structure requires a bottom-up meshing
algorithm that outputs a size-conforming mesh to en-
sure local searches and fast runtimes.

3 Data Structure and Implementation

Hudson and Türkoğlu use quadtrees for point loca-
tion as they provide cruicial properties to guarantee
fast runtimes. However, quadtrees do not adapt well
to the kinetic setting, and we instead use the kinetic
mesh of Acar et al. as our point location structure [2].
Their KDS picks Steiner points from points they call
satellites, pre-defined geometric translations of input
vertices at geometrically increasing distances. They
maintain the Voronoi diagram of their output vertex
set and their Voronoi cells, or cells in short so as to
distinguish from the Voronoi cells of our definition,
provide properties similar to those of the quadtree
squares, and our guarantees depend on them:

(A) Each cell has a constant number of neighbors.
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(B) The size of each cell is in proportion to the local
feature size of the points in the cell.

The size of a cell can be described by the nearest
neighbor distance of its node with respect to other
nodes in the diagram, and the well-spacedness of
the node guarantees that the whole cell is contained
within a ball of constantly larger radius, less than 9/2
times larger to be precise. As shown in Lemma 3.6 [2],
the nearest neighbor is at distance > 2`−2, where `,
defined as the rank of the node, is already computed
by the data structure. Using the rank information of
the nodes, we implement our procedures as follows:

• ApproximateNN(v) returns the distance 2`−2,
where ` is the rank of v. This procedure does not
create any certificates.

• AddVertex(p, v) starts at the cell of the node
that contains v and iteratively advances by mov-
ing the search to the neighbor node closest to p.
Finally, it reaches the cell that contains p as none
of its neighbor nodes is closer to p, and inserts p
in that cell as a Steiner vertex.

We certify this procedure by the distance compar-
isons between the final cell and its neighbors which
create a set of what we call cell certificates. Upon the
failure of a cell certificate, we update this search by
restarting it from the node of the failure.

• ClippedVoronoi(v, β) performs in two stages;
in the first stage it collects information about
nearby vertices. It starts at the cell of the node
that contains v and explores the region by mov-
ing outward along neighboring cells, in increasing
order of their nodes’ distances from v. It contin-
ues the search to find the nearest neighbor of v
and to determine NN(v). Then it continues the
search to explore other vertices within 2βNN(v)
distance of v. It stops exploring further at a cell
if one of the two stopping conditions is satisfied:

1. The distance from v to the cell is too large.

2. The size of the cell is too small.

Once the exploration of the nearby vertices is
over, it proceeds to the second stage to deter-
mine actual Voronoi neighbors among the ver-
tices within 2βNN(v) distance. It removes a ver-
tex u from the set if there is no witness ball inci-
dent to v and u empty of vertices or if the radius
of the smallest one is larger than βNN(v) (Fig-
ure 2). It returns the remaining set as Vorβ(v).

To make the implementation of the procedure
ClippedVoronoi(v, β) more precise, we introduce
two constants λ1 and λ2 for the stopping condi-
tions. In the first condition, we define the distance

v

u3

u2

u1

u4

βNN(v)

w1

w2

Figure 2: Setting of Figure 1. Vorβ(v) is represented
by {u1, u2, u3, u4}. Smallest witness balls incident to
each Voronoi neighbor ui and v is depicted. For the
vertices w1 and w2 within 2βNN(v) distance there are
no witness balls. Each of the circumcircles defined by
the triplets {v, w1, ui} and {v, w2, ui} contains at least
one other vertex.

from v to a cell with node p to be too large if
|vp| > (2β+λ1)NN(v) (Lemma 1). And in the second
condition, we define the size of a cell to be too small
if the rank of its node is less than ` − λ2, where ` is
the rank of v (Lemma 2).

Finally, we summarize the certificates and the ki-
netic update of ClippedVoronoi(v, β). In the first
stage, distance comparisons create what we call search
certificates. And, in the second stage, distance to
circle comparisons create what we call voronoi cer-
tificates. Upon the failure of any one certificate, we
restart that stage from scratch.

4 Proofs

In this section, we first prove that there exists con-
stants λ1 and λ2 for our procedures; we then prove
that our KDS is effective. Our proofs rely on the as-
sumptions that the mesh refinement algorithm that
employs our KDS is bottom-up and that its output is
size-conforming.

The underlying summary of the proofs in this sec-
tion is that local feature size is a smooth function and
working with size-conforming structures also achieve
similar smoothness properties. The first Lemma is
based on the property that lfs cannot get too large
within a locality.

Lemma 1 There exists a constant λ1 such that if the
procedure ClippedVoronoi(v, β) stops exploring a
cell because of the first condition, the distance from
v to any point in that cell is greater than 2βNN(v).

Proof. For any point x within 2βNN(v) distance
of v, using the triangle inequality, we know that there
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exist two output vertices within O(NN(v)) distance
of x, namely v and the nearest neighbor of v. And,
since we assume that the output is size-conforming,
we have lfs(x) ∈ O(NN(v)). Then condition (B) im-
plies that the cell that includes x has size bounded
by O(NN(v)). Let λ1 be the constant hidden in the
big-Oh notation and let p be the node of that cell. Us-
ing the triangle inequality we have |vp| ≤ |vx| + |xp|
or |vp| ≤ (2β + λ1)NN(v). Proof follows from the
contrapositive argument. �

The below Lemma is based on the property that lfs
stays large within large empty balls. In other words, if
lfs is too small in some local neighborhood, then there
must be vertices in between to support smoothness,
and well-spacedness is sufficient to ensure that.

Lemma 2 Assuming that for every mesh vertex u
with NN(u) < γNN(v) is ρ-well-spaced, there exists
a constant λ2 such that the union of the cells explored
by the procedure ClippedVoronoi(v, β) covers the
witness region of Vorβ(v).

Proof. Given a cell at which ClippedVoronoi(v, β)
stops exploration, it is sufficient to prove that the cell
does not intersect the witness region of Vorβ(v). If
the reason to stop is the first condition, by Lemma 1,
we know that the cell lies at a distance more than
2βNN(v) away from v, thus it cannot intersect the
witness region. If the reason to stop is the second
condition, for any point p in the witness region, we
know that p lies in a ball of radius at least NN(v)/2.
Therefore the premise of this Lemma satisfies the
premise of Theorem 3 in [7]. As a result, we have
lfs(p) ∈ Ω(NN(v)) or lfs(p) ∈ Ω(2`). This means that
there exists a constant λ2 large enough such that by
condition (B), for any cell of rank less than `−λ2, the
local feature size of any point in the cell is less than
lfs(p), which is to say those cells cannot intersect the
witness region. �

Since lfs is a smooth function and since we ensure
that the search does not extend to neighborhoods
that have small local feature sizes, packing arguments
prove that our procedures take constant time.

Theorem 3 In our KDS, ClippedVoronoi(v, β)
maintains Vorβ(v) and AddVertex(p, v) maintains
insertion of a Steiner vertex p in constant time.

Proof. The proof for ClippedVoronoi(v, β) relies
on two facts: the search explores only a constant num-
ber of cells and each cell contains a constant number
of vertices. For the first fact we use a packing argu-
ment: Lemma 1 bounds λ1 which in turn proves that
the search does not go beyond a distance of O(NN(v)),
and on the other hand, Lemma 2 bounds λ2 which in
turn proves that each cell explored is of size at least

Ω(NN(v)). For the second fact we use another pack-
ing argument: for a given cell, condition (B) states
that the size of the cell is bounded by O(lfs(p)) for
any given point p inside the cell, and since the mesh
is size-conforming, any vertex p inside the cell has an
empty ball of size Ω(lfs(p)).

The proof for AddVertex(p, v) is simpler:
p must lie within the cells explored in the
ClippedVoronoi(v, β) call, thus the search for p in-
volves only a subset of those cells. �

5 Conclusion

In this paper, we showed how to support a class of
mesh refinement algorithms with a kinetic data struc-
ture that could help find appropriate Steiner points
in constant time. For simplicity, we have chosen to
explain the algorithms in a purely theoretical fashion,
however, we can employ several improvements that
will make the constants in our algorithms practical.
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[7] B. Hudson and D. Türkoğlu. An efficient query struc-
ture for mesh refinement. In Canadian Conference on
Computational Geometry, pages 115–118, 2008.

[8] J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algo-
rithms, 18(3):548–585, 1995.

[9] D. Talmor. Well-Spaced Points for Numerical Meth-
ods. PhD thesis, Carnegie Mellon University, Pitts-
burgh, August 1997.
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Dynamic Convex Hull for Simple Polygonal Chains
in Constant Amortized Time per Update

Norbert Bus∗ Lilian Buzer∗

Abstract

We present a new algorithm to construct a dynamic
convex hull in the Euclidean plane, supporting inser-
tion and deletion of points. Both operations require
amortized constant time. At each step the vertices of
the convex hull are accessible in constant time. The
algorithm is on-line, does not require prior knowledge
of all the points. The only assumptions are that the
points have to be located on a simple polygonal chain
and that the insertions and deletions must be carried
out in the order induced by the polygonal chain.

1 Introduction

The convex hull of a set of n points in a Euclidean
space is the smallest convex set containing all the
points. Constructing the convex hull of a point set
is a fundamental problem in computational geometry.
It has applications in, e.g., pattern recognition, image
processing and micro-magnetic analysis [2, 6]. Many
problems can be reduced to determining the convex
hull of a point set, such as Delaunay triangulation
and half space intersection [5]. Therefore developing
robust and efficient algorithms for the core problem
has received much attention. If one considers the real-
RAM model, an optimal output sensitive algorithm
to construct the convex hull of n points in a plane
was published in [7] havingO(n log h) time complexity
where h is the output size. If the point set is a simple
polygonal chain, the best algorithm, a result of Melk-
man, runs in linear time [1]. If one requires the data
structure to be dynamic, namely to handle insertions
and deletions of arbitrary points an optimal algorithm
requiring O(log n) time for both operations was pro-
posed in [3]. Changing the computational model to
the word-RAM model and using Graham’s scan [8] to
construct a convex hull the running time is essentially
the time to sort the points, taking, e.g., O(n log log n)
time [9]. Dynamic data structures supporting dele-
tion and insertion in the word-RAM model require an
optimal O( logn

log logn ) time for both operations assuming

that word length is Θ(log n), see [4].

∗Université Paris-Est, LIGM, A3SI-ESIEE, France, {busn,
buzerl}@esiee.fr

Our contribution In this paper we give an on-line
algorithm to construct the dynamic convex hull of a
simple polygonal chain in the Euclidean plane sup-
porting deletion of points from the back of the chain
and insertion of points in the front of the chain. Both
operations require amortized constant time consid-
ering the real-RAM model. The main idea of the
algorithm is to maintain two convex hulls, one for
efficiently handling insertions and one for deletions.
These two hulls constitute the convex hull of the
polygonal chain.

2 Overview of our algorithm

Our algorithm works in phases. For a precise for-
mulation let us first define some necessary notations.
A polygonal chain S in the Euclidean plane, with
n vertices, is defined as an ordered list of vertices
S = (p1, p2, . . . , pn) such that any two consecutive
vertices, pi and pi+1 are connected by a line segment.
A polygonal chain is called simple when it is not self-
intersecting. For simplicity, we assume that the points
are in general position. Our algorithm handles inser-
tion and deletion of points into the current convex hull
in the order induced by S. This results in the fact that
the current convex hull always contains a contiguous
subchain of S, let us denote it by Sji = (pi, · · · , pj)
and the points are effectively inserted/deleted in a
FIFO manner. Let us denote the convex hull of Sji
with Cji . Therefore, given a convex hull Cji , inserting

a point results in Cj+1
i while removing the first point

results in Cji+1.

At the beginning of each phase, we initialize a sim-
ple data structure called the phase convex hull that
maintains the representation of the convex hull of a
subrange of the polygonal chain. Each phase handles
an arbitrary number of insertions and handles deleting
the points that were present when the phase started.
Assuming that the phase convex hull first covered Sba
this means we can delete the points pa . . . pb. A phase
ends, when we first delete a point that was not cov-
ered by the initial convex hull. After that, a new phase
starts and we initialize a new phase convex hull. See
Figure 1.

We state the main result of our algorithm in Theo-
rem 1.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Cba → Cb+1
a → · · · → Ccb −→ Ccb+1 → Ccb+2 → · · · → Cdc

phase starting with Sba phase starting with Scb+1

initialize new
phase convex hull

Figure 1: Example of two phases

Theorem 1 The amortized time complexity of inser-
tion and deletion of points in a convex hull of a simple
polygonal chain is constant.

Proof. Assume that each point has been inserted and
later removed. In Section 6 we show that the i − th
phase runs in O(ki + li) time where ki is the num-
ber of insertions in the phase and li is the number
of deletions. During the whole algorithm each point
has been inserted and deleted exactly once hence there
have been n insertions and n deletions overall. There-
fore the overall running time of the phases is O(n),
yielding the desired result. �

3 Convex hulls

In this section we introduce the phase convex hull
representing the convex hull of the polygonal chain.
Furthermore, we describe two convex hulls that are
maintained during the phase. These two hulls’ pur-
pose is to enable that insertion and deletion of points
for the phase convex hull run in constant amortized
time. We suggest that the reader is familiar with the
Melkman algorithm [1] as our method builds heavily
on it. Briefly, the method builds the convex hull of
a polygonal chain by iteratively (in the proper order)
adding the points to the convex hull and modifying
it as necessary. At the beginning of the phase let Sba
be the current polygonal chain while at the end let it
be Scb . Let us denote by Sji the polygonal chain at

an arbitrary step during the phase and Cji the corre-
sponding convex hull.

Phase convex hull The phase convex hull denoted
by C∗ is the data structure representing the convex
hull Cji , containing all of its points in two dequeues.
Every point is contained in exactly one of the two de-
queues except for two: the front of both dequeues refer
to the same point of the subchain, the one contained
in Cji with highest index and similarly, the back of
both dequeues refer to the same point of the subchain,
the one contained in Cji with lowest index. We refer to
the front of both dequeues as front opening and to the
back as back opening. Connecting the two dequeues
gives the ordered circular list of points in Cji . See
Figure 2. Clearly, if one considers the back opening
to be closed (i.e., as if being glued together, remov-
ing the duplicate copy of the back point), one has the

data structure used in the Melkman algorithm. At
the beginning of the phase C∗ is built for Sba using
the Melkman algorithm.

pi
pb pj−1pj

deque

Figure 2: The two dequeues (blue and yellow) consti-
tuting C∗. For clarity we include one schematically.
In green and red we depict C+ and C− respectively.

The following data structures aid to handle inser-
tion or more importantly deletion of points (since the
phase convex hull itself could handle insertions).

Incremental convex hull The incremental convex
hull is a convex hull incrementally built with the
Melkman algorithm for the points in the polygonal
chain added after the initialization of the phase. Let
us denote it by C+. At any step Sji , formally, C+ is

the same as Cjb+1.

Decremental convex hull The decremental convex
hull is a convex hull built with the Melkman algo-
rithm for the points present at the beginning of the
phase but according to the reverse order of the points.
Let us denote it by C−. At each deletion a point is
removed from C−. At any step Sji , formally, C− is
the convex hull of the points Sib (note the reverse or-
der). This data structure has to maintain additional
information that will be used for efficient deletion of
points. First, while creating C−, for each point in Sab ,
the list of points that were removed from the previous
convex hull should be kept. Let us call these points
the history of a point. This enables that the algo-
rithm can be ‘rewound’, i.e, the points of C− can be
deleted in a FILO order. As C− was built in the re-
verse order this is exactly the deletion order we need.
Second, the polygonal regions defined by Cjk\C

j
k+1 for

a ≤ k ≤ b, in other words the difference between con-
secutive convex hulls in the Melkman algorithm for
building C−, have to be kept. At the beginnning of
each phase we build the decremental convex hull for
Sab . In Figure 3 we show the regions where the red
polygonal chain is Sba. The green line corresponds to
the polygonal chain of the points inserted during the
phase.

We will need a simple property of the regions,
namely that they form an ordered partitioning of the
plane that enables a certain operation. See Lemma 2.

233



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

7

6

5

4
3

2

1

pa

pb
pc

Figure 3: Regions.

Lemma 2 While constructing C− for Sba one can cre-
ate an ordered list of regions in O(b − a) time. Such
a partitioning enables the maintenance of the highest
ordered region that contains any point inserted dur-
ing the phase. This operation takes O(c− b) time for
a phase.

In Figure 3 the highest ordered region containing a
point inserted in the phase is region no.7. The lemma
is a straightforward consequence of the Melkman al-
gorithm as given the current highest ordered region
containing an inserted point one only has to check
whether a newly inserted point is contained in the re-
gion following (in order) the current one. One has to
be careful when adding the point pb+1 as there was no
highest ordered region before, but this case is trivial.

4 Insertion

In this section we describe the method to handle the
insertion of pj+1 into the convex hull of Sji .

In order to insert the point pj+1 into C∗ it is suf-
ficient to do one step of the Melkman algorithm at
the front opening of the dequeues. For that, consider
the back opening of C∗ to be closed, i.e., the two de-
queues behave like one. One has to be cautious when
the Melkman algorithm deletes the point being the
back opening as the new back opening should be by
our definition the point in Cji with least index. C+

has to be updated with pj+1 as well, which is done
using the Melkman algorithm. Moreover, as long as
the front opening is one of the points in C− one has to
update the highest ordered region of C− containing
any inserted point.

5 Deletion

In this section we describe the deletion of the point
pi from Sji . We will need a property concerning the
points in the phase convex hull C∗. Note, that the
points of C∗ either belong to C+ or C−. The following
lemma describes how the points’ distribution (with

respect to whether they belong to C+ or C−) changes
during the execution of the operations in a phase. It
states that there cannot be arbitrary distributions,
e.g., points from C+ and C− in an alternating order.

Lemma 3 The points in C∗ are partitioned into con-
tiguous ranges according to whether they belonging
to C− or C+. At any step in a phase there are at
most two such partitions, one containing points of
C+ and one containing points of C−. The partition-
ing changes in a specific pattern during a phase: at
the beginning there are only points from C− in C∗;
then two partitions; finally only points from C+ are
located in C∗.

The fact that C∗ is partitioned into at most two
parts is a consequence of the simplicity of the polygo-
nal chain. The strict order also follows easily since C+

is monotonically growing while C− is monotonically
shrinking.

To delete the point pi there are several scenarios
that have to be handled differently. As a common
point in all cases pi has to be removed from C− and
its history has to be added to C− (‘rewinding’ the
Melkman algorithm). Let us first group the different
cases according to Lemma 3.

Case 1: If the phase convex hull contains only
points from C− then one can simply remove pi from
C∗ and add the points of the history of pi to C∗. This
is valid as long as there shall be no point of C+ added
to C∗. The highest ordered region is maintained ex-
actly for checking this. As long as the deleted region
has no points assigned to it we can proceed as ex-
plained. If it is not empty then an expensive operation
is required, namely to add all the points of C+ to C∗.
This can be done with the Melkman algorithm con-
sidering the back opening to be closed. Even though
this operation might require linear time in the number
of insertions it can happen only once for each phase
therefore its amortized time complexity is constant.

Case 2: If the phase convex hull contains points
from both C+ and C−, we have the most complicated
case. Obviously the point pi to be removed is in C−.
Let us denote the neighbors of pi in C∗ by x and y.
The edge between x and y would become an edge of
C∗ if there are no points in the triangle defined by
pi, x, y. But usually this is not the case therefore one
has to create new edges of C∗ that correspond to the
vertices located in this triangle. Adding these points
(and at the same time checking if there are points
inside the triangle) is done as follows. We further
categorize this case into three sub cases depending on
the neighbors of pi.

Case 2a: If both x and y belong to C− then clearly
C∗ can only be modified by the points from the history
of the currently deleted point pi. In such a situation
using the Melkman algorithm one can add the ordered
history of pi to C∗.
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Case 2b: If one point, e.g., x belongs to C+ then
there might be points of C+ that have to be inserted
into C∗. In this case first the history of pi and its
neighboring point in C− (that is not y) should be
inserted into C∗ and then starting from x we shall
add the vertices of C+ in the circular order (starting
with the neighbor of x not contained in C∗) using the
Melkman algorithm but just as long as they create
new vertices on C∗. One can show that if a point of
C+ is inside C∗ then there are no other points that
shall be inserted.

Case 2c: If both x and y belong to C+ then a
similar process has to be carried out namely first in-
serting the points of the history (with the 2 neighbors
of pi in C−) and then the vertices of C+ in the proper
circular order starting from x and y. Note that x and
y define two different parts of C+ that have to be in-
serted into C∗ and to maintain a low running time
one has to insert points from these two parts in an al-
ternating order (one cannot proceed with points from
the part of x after finishing the points starting from
y). When a point remains inside the phase convex
hull we can finish inserting points from its part. See
Figure 4 for a schematic illustration of the process.
In order to be able to utilize the Melkman algorithm
the added points have to belong to a simple polygonal
chain, otherwise using Melkman would be impossible.

Case 3: If C∗ contains only points of C+ than
C− ⊂ C+ therefore there is no change in C∗.

How to ensure the applicability of the Melkman al-
gorithm and the proof of correctness, e.g, why is it
sufficient to add only the history of pi in Case 2 is left
for the full paper.

pi pjpb

y

x

Figure 4: Deleting the point pi. Solid blue lines de-
note the convex hull after deleting pi. Gray arrows
denote the points that have to be inserted into C∗.

6 Complexity

Let us now show that each phase takes time linear in
the number of insertions and deletions. Let us denote
them by k and l respectively.

Initialization: Clearly, initializing C∗, C+ and
C− is linear in the number of points present at the
beginning of the phase since we only utilize a modi-

fied Melkman algorithm. This indeed is the same as
the number of points deleted in the phase. Therefore
the complexity of initialization is O(l).

Insertion: Using the Melkman algorithm for both
the phase convex hull and the incremental convex hull
takes O(k) time. During insertion of points one has
to also maintain the highest ordered region containing
any point of C+. This can be done in O(k) time.

Deletion: Clearly, during executing the deletions,
the number of points inserted into C∗ using the Melk-
man algorithm is not more than a constant times the
points in C− which is O(l) and the points of C+ added
to C∗ which is less than O(k) as no point can reappear
on C∗ due to the monotonicity of the operations.

This results in the following theorem.

Theorem 4 The running time of one phase is O(k+
l) given that there are k insertions and l deletions.

7 Conclusion

We have presented an algorithm that handles inser-
tion and deletion of points from/into the convex hull
of a simple polygonal chain. Each operation takes
amortized constant time. The operations are carried
out in a FIFO manner, namely that points are in-
serted on one end of the chain while points are deleted
from the other. It would be interesting to see if this
constraint can be removed, namely that points can be
inserted/deleted on both ends of the chain.
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A local geometry based algorithm for point cloud edge classification ∗

Mihai Sorin Stupariu†

Abstract

The identification of salient features in point clouds is
one of the main application areas of geometric algo-
rithms. In this paper, we deal with identifying edges
in high density point clouds on polyhedral objects on
the basis of a two-stage classification method. The
first step consists in applying Principal Component
Analysis, which commonly uses the eigenvalues of the
covariance matrix and provides several point classes.
In the second stage, a neighbourhood-based analysis
is used for refining the classification. The method re-
lies on the discrete Gaussian curvature, defined as a
weighted angular defect and computed for the vertices
of a suitably chosen triangulation. A special empha-
sis is put on identifying jump edges, which correspond
to surface discontinuities and crease edges, which oc-
cur where two planes of the same object meet. The
key issue is that the local geometry of a point cloud
is different in a neighbourhood of a jump edge - pla-
nar structure, compared to a crease edge, where two
planes intersect along the support line of the edge.

1 Introduction

Even though formally unorganized, a point cloud car-
ries in many situations an internal structure and fun-
damental shapes can be detected (e.g. Schnabel [11];
van Lankveld et al. [14]). The hidden geometric struc-
ture can be unveiled by using appropriate tools, such
as the ones provided by multivariate statistics. As
shown by Hoppe et al. [6], Principal Component Anal-
ysis (PCA for shorthand) applied to a point cloud
yields a well-defined local structure in the neighbour-
hood of each point. The technique may be completed
by other methods, in order to extract salient features
or to achieve a suitable classification. Thus, Gumhold
et al. [4] and Pauly et al. [8] computed a minimum
spanning graph for approximating the features of in-
terest. Roggero [10] derived moments and tensor of
inertia from the outcomes of the eigenvalue analysis,
in a region-growing approach. Cao et al. [1] performed

∗This work was supported by the Swiss Enlargement Contri-
bution in the framework of the Romanian-Swiss Research Pro-
gramme, project WindLand, project code: IZERZO 142168/1
and 22 RO-CH/RSRP.
†University of Bucharest, Faculty of Mathematics and

Computer Science and Institute of Research of Univer-
sity of Bucharest ICUB; Transdisciplinary Research Centre
Landscape-Territory-Information Systems, CeLTIS

a tensor voting technique to refine normal estimates,
which were derived by using PCA. The random sam-
ple consensus algorithm was used by Yang et al. [16]
for segmenting building objects identified through the
multivariate statistical approach. Other complemen-
tary techniques include gridded approximate nearest
neighbour searches for fast classification of geometric
features (Shi and Zakhor [12]) or 3D shape analysis
and region growing (Carlberg et al. [2]).

Another way to tackle classification problems is to
define an additional structure in the point cloud and
to apply algorithms suited to structured data (e.g.
Remondino [9]). For instance, a triangulation pro-
vides a geometric structure to an unorganized point
cloud. Consequently, in this framework, one can de-
rive geometric measures useful in characterizing im-
portant features of the cloud. Gorte [3] adapted
an iterative, raster-based algorithm, controlled by a
single parameter related to dissimilarity of adjacent
segments. A clustering technique was used by Hof-
mann [5] for analysing a 3D triangle mesh parameter
space. Progressive TIN densification stands as one of
the classic methods for filtering point cloud data, as
pointed by Zhang and Lin [17]. Tse et al. [13] pro-
posed a method based on the Delaunay triangulation
and its dual Voronoi diagram aiming to locate struc-
tures such as building blocks and roofs.

The goal of this paper is to present a classification
method combining the two approaches and aiming to
identify edges in high density point clouds. Specif-
ically, by using the outcomes of the Principal Com-
ponent Analysis, we construct a local triangle mesh.
Then, we show that the classification provided by the
multivariate statistics can be refined by using appro-
priate geometric quantities derived from the triangu-
lation.

2 The algorithm

The algorithm has two stages, both based on neigh-
bourhood analyses (Figure 1). In brief, the first step
relies on eigenanalysis, while the second one is based
on geometric information.

A particular goal of the classification is to make it
possible to distinguish between points belonging to
jump edges and those situated on crease edges. Both
edge types constitute salient features of a point cloud,
but they are different in nature: the former class cor-
responds to height or depth discontinuities of the sur-

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Step 2. Local triangulation based classification    

Distance, curvatures sum (δ, κ) 

Reclassify the points of the class (4) other. Besides the 
existing classes extract, aditionally, the classes             

(5) jump edge and (6) crease edge. 

 Step 1. PCA based classification   

Eigenvalues (λ1, λ2, λ3 ) 

Four classes of points:  

(1) planar, (2) linear, (3) scatter and (4) other.  

Figure 1: The two stages of the algorithm.

face, while the latter occurs where two planes, which
may belong to the same object or to adjacent objects,
meet (e.g., Wang and Shan [15]). The main hypothe-
sis tested in the study is that the local geometry of a
point cloud differs for jump edges compared to crease
edge. Thus, in the neighbourhood of a jump edge,
the local structure is close to a planar one, whereas
for crease edges two planes intersecting along the sup-
port line of the edge.

In the sequel let C denote a point cloud situated in
the space R3.

First step - PCA based classification

One can make a substantial step towards un-
derstanding the structure of the cloud C around a
fixed point P by investigating the spatial distribution
statistics. Thus, the Principal Component Analysis,
based on analysing the eigenvalues of the covariance
matrix, identifies the main directions of variation of
the data. For instance, if around P the points are
situated close to a plane, the PCA will provide two
principal components that account together for a sig-
nificant proportion of the variation, that is the first
two eigenvalues are comparable in size and much big-
ger than the third one. This approach is implemented
as follows. Consider a fixed a search radius r > 0 and
extract the sub-cloud S of neighbours of P inside the
ball of centre P and radius r. Let λ1, λ2, λ3 be eigen-
values of the covariance matrix (λ1 ≥ λ2 ≥ λ3). Com-
parisons of the eigenvalues yield the following point
classes (cf. [2], [12])):

1. planar point if λ1 ≈ λ2 >> λ3;

2. linear point if λ1 >> λ2 ≈ λ3;

3. scatter point if λ1 ≈ λ2 ≈ λ3;

4. other, otherwise.

From a practical perspective, the classification
above can be implemented by using appropriate
thresholds (chosen by the user): t1 for a ratio ‘close’
to 1, t2 for ‘small’ and t3 for ‘large’. With these no-
tations, the classification can be phrased as follows:

1’. planar point if λ2/λ1 > t1 and λ3 < t2;

2’. linear point λ3/λ2 > t1 and λ1 > t3;

3’. scatter point λ2/λ1 > t1 and λ3/λ2 > t1.

Second step - local triangulation
The aim of the second step is to refine the classifi-

cation provided by the PCA-based one and relies on
geometric tools. For achieving this aim, a topological
structure has to be introduced in the point cloud. A
possible approach, further explored in this paper, is
based on the use of triangulations. Instead of generat-
ing a global triangulation, we exploit the information
provided by the multivariate statistics and generate
local triangle meshes, using the plane determined by
the first two principal axes as reference plane. Specif-
ically, let P be a point classified as other. Consider
again the sub-cloud S inside the ball of centre P and
radius r. We generate a 2.5 Delaunay triangulation
T for the points of the sub-cloud S by considering
P as origin and the plane z = 0 as being the plane
π1,2
P determined by the first two principal axes. This

means that we project the points of S on the plane,
we generate the 2D Delaunay triangulation for the set
S ′ of projected points and we then lift the topological
structure back to the cloud S.

For the triangle mesh T we compute the following
geometric quantities:

• δ = the distance from P to the border of the
convex hull of the planar point set S ′,

• κ = the sum of the Gaussian curvatures of the
vertices of T that are not lying on the border
(the Gaussian curvature at a vertex is defined as
a weighted angular defect, e.g. [7]).

The choice of these parameters is related to the fol-
lowing hypotheses: (i) edge points are closer to the
border of the convex hull than other types of points;
(ii) for an ‘interior’ point or for a point in the neigh-
bourhood of a jump edge, the triangle mesh is al-
most planar and hence the deviation from planarity
(with respect to the plane z = 0) of S is very small,
that is the sum of Gaussian curvatures κ is close to
0. The second step of the algorithm yields the follow-
ing point classes, defined by using suitable thresholds.
Let t4 > 0 be the threshold for ‘small’ distance and let
t5 > 0 be the threshold for ‘small’ curvature. Denote
by N the number of points in S. The point P is:

5. jump edge point if δ ≤ t4 and κ ≤ t5N ;
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6. crease edge point if δ ≤ t4 and κ > t5N .

Furthermore, if δ > t4 and κ ≤ t5N the point belongs
to the class interior, defined in the first step.

The definition above reads as follows. For an in-
terior point one has a small deviation from planarity
and the point is not close to the border of the locally
generated 2D convex hull. In contrast, for points close
to this border one may assume that they are situated
on edges (or close to them). The difference between
jump and crease edge points is actually induced by
the local deviation from planarity, which is quantified
by comparing the total sum of Gaussian curvatures κ
with the product t5N .

Let us finally notice that, for points classified as
other after the second step, one can repeat the pro-
cedure, but choosing as reference the planes π2,3

P and

π3,1
P generated by the other pairs of principal axes.

3 Results

We tested the algorithm for a synthetic data set con-
sisting of points selected through jittered sampling on
the visible faces of two adjacent cuboids (Figure 2).
No point was chosen on the remaining faces of the
cuboids. Therefore, one obtained two possible local
configurations around the edge points of the cuboids.
Due to a priori knowledge of the point coordinates,
it was possible to label points belonging and close to
crease and jump edges. Specifically, we labelled as
edge points the points inside a tubular neighbourhood
of radius ρ. It is worth to notice that, in case of ad-
jacent cuboids, one might need to split original edges
into pieces of crease and jump edges (Figure 2). 

 

Jump edges Crease edges 

Figure 2: The synthetic data set used in the analyses.
Crease and jump edges are differently represented in
the figure.

The implementation of the algorithm described in
section 2 is based on choosing suitable thresholds
t1, t2, . . . , t5. Throughout the paper, the search radius
r is fixed; its influence on the accuracy will be ad-
dressed in a subsequent study. Since we were mainly
interested in testing hypotheses related to the local
geometric behaviour of the point cloud, we estimated

how the accuracy of the algorithm depends on the
variation of t4 and t5. For the other three thresh-
olds, we fixed the values t1 = 0.7, t2 = 0.1, t3 = 3, on
the basis of numerical experiments. With this choice,
almost 91% of the interior points were correctly clas-
sified by the first step of the algorithm. In order to
identify edge points, we applied the second step of the
algorithm, for different values of t4 and t5. First, we
studied the dependence between the value of t4 and
the proportion of edge points that were correctly de-
tected by the algorithm (Figure 3). We selected four
values for t5, corresponding to different scales of flat-
ness (t5 ∈ {0.001, 0.01, 0.1, 1}). The resulting curves
have a similar shape. The first inflection point, hav-
ing abscissa approximately 1, is related to the den-
sity of the point cloud, while the second one, having
abscissa approximately 4, is related to the choice of
the radius defining the tubular neighbourhoods of the
edges. The graph shows that, for t5 = 0.01, one cor-
rectly identifies more than 80% of the edge points.
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Figure 3: Relationship between t4 and the share of
correctly identified edge points. For the threshold t5
four values were taken into account: 0.001, 0.01, 0.1,
and 1, respectively.

The choice of the threshold t5 is crucial for classify-
ing the edge points as belonging to jump or to crease
edges. If the value of t5 is too small, almost all the
edge points are classified as crease, whereas for bigger
values of t5, the number of jump edge points is overes-
timated (Figure 4). Nevertheless, for a suitable choice
of t5, most of the edge points are correctly classified.
In particular one can distinguish between jump and
crease edges having the same support line.

Figure 4: Choice of the threshold t5. The threshold t4
is fixed (t4 = 4.5) and the threshold t5 has the values
0.0001, 0.0102, and 0.12, respectively. The codes of
the colours are blue=jump edge; red=crease edge.
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Figure 5: Relationship between t5 and the proportion
of points that are classified as belonging to jump edges
or crease edges. The value of t4 is equal to 4.5.

The heuristic approach illustrated in Figure 4 sug-
gests that, when the value of t5 increases, the amount
of points classified as ‘jump’ also increases, while the
opposite happens for crease edge points. It is a nat-
ural question whether the total amount of correctly
identified edge points corresponding to the equilib-
rium is high or it is low. The specific behaviour of
this variation, corresponding to a fixed value of the
threshold t4 (namely t4 = 4.5) is illustrated in Figure
5. For t4 ≈ 0.01 approximately 85% of both jump and
crease edge points are correctly identified by the algo-
rithm. Let us finally note that actually, in the numer-
ical tests, values of t4 and t5 close to 4.5, respectively
to 0.01 yielded the most accurate classification of the
edge points.

4 Conclusion

The study presented a classification algorithm for
dense point clouds, with an emphasis on detecting
jump and crease edges. The approach relied on apply-
ing Principal Component Analysis and constructing a
local Delaunay triangulation, naturally associated to
the point cloud and reflecting its intrinsic local ge-
ometric structure. From a quantitative perspective,
besides the eigenvalues provided by the multivariate
statistics, we used the local triangulation for comput-
ing the sum of discrete Gaussian curvatures and the
distance to the border of a suitable 2D convex hull.
The method was tested in the case of a synthetic poly-
hedral object, for which more than 80% of the points
were correctly classified. As tasks for future work, we
mention tests on real data sets and comparisons to
state of the art point cloud edge detection methods.
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Improved single tree-crown extraction from 3D point clouds∗

Domen Mongus† Borut Žalik

Abstract

This paper proposes a new approach for the delin-
eation of single tree-crowns in LiDAR data that is
based on Locally Fitted Surfaces (LoFS). This new
definition of watershed markers is, in comparison to
the traditionally used local maxima of the smoothed
canopy height model, better adapted for dealing with
anisotropic shapes regarding tree-crowns of various
sizes. As confirmed by the results, approximately 6%
increase in overall accuracy is achieved in this way.

1 Introduction

By allowing for fast and accurate monitoring of
vast geographical areas with resolutions reaching be-
yond square decimetres, airborne Light Detection and
Ranging (LiDAR) technology has triggered a new
wave of research in Earth observations. The unprece-
dented information contained within the acquired
datasets, however, impose great challenges for data
processing and drive the demand for more efficient
object recognition algorithms capable of dealing with
those topologically unstructured and often noisy data.
With the obviously huge environmental impacts of
forests, capturing and processing forest data is an es-
pecially important yet difficult task due to their vast
extents and the complex geometries of trees.

By identifying and delineating individual trees, the
so-called individual tree-crown approach provides an
improved methodological framework for forest char-
acterisation. In the more common cases, delineation
of individual trees is utilised by the segmentation of
a canopy height model (CHM) [9, 4]. Generated by
subtracting the digital terrain model (DTM) from the
digital surface model (DSM), CHM provides estima-
tions of tree heights at discrete space intervals (usually
grid). Local maxima are then used to define the posi-
tions of treetops, while the segmentation is commonly
achieved by applying region growing [9] or watershed
algorithms [14]. Although this is an elegant approach,
there are several issues related to it. Namely, due
to the complex geometry and noise contained within
the LiDAR data, defining treetops by local maxima
alone inevitably results in oversegmentation. Typi-

∗This work was supported by the Slovenian Research Agency
under grants J2-5479, J2-6764, and P2-0041.

†Faculty of Electrical Engineering and Computer and Sci-
ence, University of Maribor, Slovenia.

cal approaches to this issue include smoothing CHM
as described by [9], controlling the distances between
treetops [4], and data scaling based on minimum cur-
vature estimation as considered in [14]. Neverthe-
less, by assuming that individual trees form distinct
peaks in the CHM, these methods tend to perform
well in structurally homogeneous plantations, single-
species dominated stands, and forests with widely-
spaced trees. However, significantly lower accuracies
are reported in more complex cases, where trees are
clumped together and have well-developed under and
midstorey canopy layers consisting of smaller, shade-
tolerant trees.

This paper considers a new definition of markers
for single tree-crown delineation. The underlying the-
oretical foundations are given in Section 2. Section 3
proposes a new framework for delineating single-trees.
Section 4 provides the results and Section 5 concludes
the paper.

2 Theoretical foundations

We define an undirected graph G by the set of ver-
tices V (G) and a set of undirected edges E(G). An
edge ei,j ∈ E(G) is defined by a pair of vertices ei,j =
(vi, vj), where vi, vj ∈ V (G). A graph GA ⊆ G is a
subgraph of G if V (GA) ⊆ V (G) and E(GA) ⊆ E(G).
An arbitrary vertex attribute-function, denoted as
A, is a mapping A : V (G) → R (e.g. spatial co-
ordinates of vertex vi are given as X[vi], Y [vi], and
Z[vi]), while the edge weight-function is the mapping
W : E(G) → R. An edge-weighted graph is thus
given by a pair (G, W ). When considering operations
on weight-functions, we denote the infimum (i.e. min-
imum) by

∧
, and

∨
is used to denote the supremum

(i.e. maximum).
Let an ordered sequence of vertices Pi0,iL =

{vi0 , vi1 , . . . , vL}, we say that Pi0,iL
is a path from

vi0 to viL in a graph G if ∀l ∈ [1, L] there exists
an edge eil−1,il

∈ E(G). The length of the path is

given by L = |Pi,j | − 1, where notation P̂i,j is used
to emphasise that Pi,j is the shortest path between
vi and vj . If there exists Pi,j , we say that vertices
vi and vj are linked and a graph G is called con-
nected if ∀vi, vj ∈ V (G) there exists Pi,j in G. A
subgraph Ci ⊆ G is called a connected component of
G if Ci is connected and is maximal for this property.
Each Ci is uniquely addressed by any member vertex
vi ∈ Ci. When considering two non-empty subgraphs

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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GA, GB ⊆ G, GB is called an extension of GA in G if
GA ⊆ GB and any connected component of GB con-
tains exactly one connected component of GA. Conse-
quently, a set of edges E(GC) ⊆ E(G) is a graph-cut
for GA if E(GC) is an extension of GA and if E(GC) is
minimal for this property [2]. We denote a graph-cut
for GA as EC(GA). Another particularly important
subgraph for the following definitions is a graph of
local minima. These are defined as connected sub-
graphs of equally weighted edges, the adjacent edges
of which have strictly greater values. A graph union
of local minima is denoted as M(G,W ).

2.1 Watershed

The definition of watershed used in this paper re-
lies on the notion of the minimum spanning forest
MFS(G,W ), constructed on (G,W ), relative to the
set of local minima M(G,W ). Let GA ⊆ G, we say
that GA is a forest relative to M(G,W ) if GA is an
extension of M(G,W ) and for any extension GB of
M(G,W ), such that GB ⊆ GA, V (GA) = V (GB)
implies GA = GB . When V (GA) = V (G), we say
GA is a spanning forest relative to M(G,W ) for
G. MSF(G,W ) is, thus, a spanning forest relative
to M(G,W ), the sum of edge-weights of which is
less than or equal to the sum of the edge-weights of
any other spanning forest relative to M(G,W ) for
(G, W ). As shown by [2], a watershed is a graph-
cut EC(MSF(G,W )) for MSF(G, W ) or, equivalently,
watershed regions are connected components Ci ∈
MSF(G,W ).

In addition to its efficient implementation (see the
pseudocode in [2]), the given watershed definition al-
lows for flexible graph segmentation by manipulat-
ing over the edge weight functions. When consid-
ering the classical watershed problem where those
“valleys” separated by “ridges” are being segmented,
edge-weights are defined by the lowest attribute
value of the corresponding vertices, i.e. W [ei,j ] =∧{A[vi], A[vj ]}. Inversely, the segmentation of peaks
is achieved by W [ei,j ] =

∧{−A[vi], −A[vj ]}. Further-
more, a marker-controlled watershed can be achieved
by filtering the underlying attribute function A, dis-
cussed next.

2.2 Connected operators on graphs

We define the neighbourhood of a vertex vi (i.e. struc-
turing element) by a subgraph Ss

i ⊆ G of size s, the
vertex-set and edge-set of which are:

V (Ss
i ) = {vj ∈ V (G) : |P̂i,j | − 1 ≤ s} ∪ {vi},
E(Ss

i ) = {ej,k ∈ E(G) : vj , vk ∈ V (Ss
i )}.

(1)

In other words, vertex-set of Ss
i consists of vertices

whose shortest paths from vi are no longer than
s and its edge-set contains the corresponding edges

from E(G). A dilation of A at vi is then defined
as δs(A)[vi] =

∨
vj∈V (Ss

i ) A[vj ], while an elemen-

tary geodesic dilation δ1
A(AM ) of a marker attribute-

function AM under the mask A is according to [13]
given as

δ1
A(AM )[vi] =

∧
{δ1(A)[vi], A[vi]}. (2)

Geodesic dilation of size s ≥ 1, denoted as δs
A,

is defined by iterating elementary geodesic dilation
s−times. As only undirected graphs are considered in
this paper, elementary erosion is given by the duality
principle as ϵs(A) = −δs(−A) and geodesic erosion as
ϵs
A(AM ) = −δs

−A(−AM ). A straightforward approach
to marker-controlled watershed is achieved by the so-
called reconstruction closing of A under the marker-
function AM [12]. For this purpose, AM [vi] = A[vi] if
vi is marked and AM [vi] = ∞ otherwise. Reconstruc-
tion by erosion, denoted as ϵR, is defined as a stable
state achieved after iteratively applying elementary
geodesic erosions [10, 8]. Accordingly,

ϵR
A(AM ) =

∧

s→∞
ϵs
A(AM ). (3)

The edge-weight function allowing for
marker-controlled watershed is then given
as W [ei,j ] =

∧{ϵR
A(AM )[vi], ϵ

R
A(AM )[vj ]} or

W [ei,j ] =
∧{−ϵR

A(AM )[vi], −ϵR
A(AM )[vj ]} when

peaks are being segmented rather than valleys.
Based on these notions, a new approach for single-
tree delineation in LiDAR data is proposed next.

3 Single tree-crown delineation

During the initial step of the method, the topology
construction over the input LiDAR point cloud is
done in consistency with the graph-theoretical ap-
proach. Although any type of undirected graph can be
used, sufficient memory and computational efficiency
is achieved by constructing G as a regular 2D grid for
the representation of CHM. A digital surface model
is then constructed as a mapping DSM : V (G) → R,
where DSM[vi] is defined by the highest point within
the neighbourhood of vi (i.e. the considered grid cell).
DTM is in our case constructed as described by [7] and
then subtracted from DSM. The heights of the ver-
tices corresponding to building regions are set at 0 in
order to obtain CHM.

3.1 Segmentation of canopy layer

This section proposes an improved treetop detection
based on locally fitted surfaces (LoFS), leading to
a significantly lower oversegmentation in comparison
with the usually used local maxima search. Initially
proposed for the extraction of planar points in [7],
LoFS uses surface-fitting based on least squares in
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order to obtain descriptions of vertices’ local neigh-
bourhoods. As the least-square fitting is well known,
it is not discussed at this point. An in-depth study
of the least-squares is provided by [1] and [11]. Let
Πs(G2,CHM) be a set of polynomials, best-fitted to
CHM within the neighbourhood of a given vertex
vi (note that the neighbourhood of vi is defined by
a subgraph Ss

i ⊆ G2). The best-fitted polynomial
Πs(G2, CHM)[vi] is given in explicit form as

Πs(G2,CHM)[vi] =
c5X[vi]

2 + c4X[vi]Y [vi]+
+c3Y [vi]

2 + c2X[vi] + c1Y [vi] + c0.
(4)

When considering coefficients ck (where k ∈ [0, 5])
defining Πs, the neighbourhood of vi at scale s can be
segmented into convex, concave, or neither of those,
i.e. a saddle [3]. Namely, it can be shown that
Πs(G2,CHM)[vi] is saddle if c2

4 − 4c5c3 ≥ 0. Oth-
erwise, the neighbourhood is convex if c5 ≥ 0 and
concave if c5 < 0.

Intuitively, vertices with concave neighbourhoods
represent treetops, while saddle and convex neigh-
bourhoods appear near the boundaries of tree-crowns.
As the used surface approximation is, by itself, capa-
ble of absorbing a fair amount of noise, treetop de-
tection is significantly more reliable in this way. It
is also better adapted for dealing with anisotropic
tree-crowns than e.g. Gaussian filtering at variable
scales [5]. Most importantly, the proposed approach
allows for controlling the curvature of the treetops by
applying a threshold ťM instead of using a constant
0. Thus, a marker function CHMM used for marker-
controlled watershed is given as

CHMM [vi] =

{
CHM[vi], if concave.

∞, otherwise.
(5)

The edge-weight function, allowing for watershed seg-
mentation based on LoFS, is defined as

WΠ[ei,j ] =∧{−ϵR
CHM(CHMM )[vi], −ϵR

CHM(CHMM )[vi]}.
(6)

Watershed is thus obtained by a cut
EC(MSF(G2,WΠ)) and watershed regions defin-
ing individual trees are connected components
Ci ∈ MSF(G2,WΠ).

4 Results

The proposed approach was evaluated on six differ-
ent LiDAR datasets of different terrain configuration,
forest types, and data density. Within these datasets,
11 test areas were selected where ground truth mea-
surements were acquired. The centres of each test
area were defined first and the positions of the trees
within a radius of 12m were measured. In total, the
positions of 232 trees were sampled using Garmin

GPSMAP 60CSx. The estimated average error was
approximately 2m in all the test cases, with standard
deviation equal to 0.5m.

In the first step of the validation procedure, de-
tected trees within the test areas are extracted first
by thresholding them based on their distances from
the closest centres of the test areas. These are then
matched by linking them with the closest ground-
truth positions of the tree trunks, where: i) tp are true
positives, defined by the number of ground truth trees
that were detected, ii) fp are false positives, detected
if a ground truth tree is matched with more than one
estimate, and iii) fn are false negatives, defined by the
number of ground truth trees that were not matched.
Accordingly, the following statistical measurements of
the performance were used [6]: i) sensitivity or true
positive rate tpr is given by tpr = tp/(tp+fn), ii) pre-
cision or positive predictive value ppv is defined as
ppv = tp/(tp + fp), and iii)f1-score is the harmonic
mean of precision and sensitivity, given by f1-score
= 2tp/(2tp + fp + fn).

4.1 Validation

The proposed approach for the delineation of CHM
based on LoFS was evaluated in comparison to the
traditional approach with local maxima-based def-
inition of watershed markers. As the compared
method relies on smoothing in order to cope with
oversegmentation, different smoothing levels (i.e σ ∈
{0.5, 0.75, 1.0, 1.25, 1.5}) were applied. On average,
the highest f1-score value was achieved when σ

.
=

0.75 and the values of tpr and ppv were balanced (see
Fig. 1a) as σ positively correlates with ppv, while its
correlation with tpr is negative. Although only the
highest f1-score achieved by the compared method
was used in further comparisons, significant improve-
ment in the results was achieved with the proposed
LoFS-based definition of markers, where curvature
threshold ťM = 0.01 was used in all the cases (see
Eq. 5).

The proposed method achieved lower tpr value in
comparison to the traditional approach (see Fig. 1),
however, its precision given by ppv was greater. The
decreased tpr can be attributed to the inaccuracies
of the ground-truth data and the matching procedure
that may coincidentally match the overdetected trees
from the canopy layer with the understorey trees.
Nevertheless, the proposed method achieved higher
f1-score in all cases. This indicated that the pro-
posed method was better adapted for dealing with
noise and confirmed that the LoFS-based definition
of markers outperformed the local maxima search as
it is better adapted to dealing with the anisotropic
shapes of tree-crowns of different sizes than straight-
forward smoothing of CHMs at various levels.
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LoFS based approach
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Figure 1: The accuracy of single tree-crown extraction
of the compared method at different smoothing levels
(left) and the increase in efficiency achieved by the
proposed method (right).

5 Conclusion

This paper proposes an improved CHM analysis for
single tree crown delineation using LoFS-based def-
initions of markers. Since LoFS can be asymmet-
rical and of arbitrary curvature, the proposed ap-
proach is superior to the traditional predifined filters,
e.g. Gaussian kernel. As confirmed by the results,
this self-adaptation to various sizes and anisotropic
shapes of tree-crowns results in approximately 10%
improvement of extraction rate, while the precision is
decreased by less than 3%.
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Low-quality dimension reduction and high-dimensional Approximate
Nearest Neighbor ∗

Evangelos Anagnostopoulos† Ioannis Z. Emiris‡ Ioannis Psarros†

Abstract

We generalize the Johnson-Lindenstrauss lemma to
define “low-quality” mappings to a Euclidean space of
significantly lower dimension which allow us to solve
the approximate nearest neighbor problem (ε-ANN).
With high probability, an approximate nearest neigh-
bor lies among the k approximate nearest neighbors
in the projected space. In order to compute them,
we employ a data structure, such as BBD-trees. Our
algorithm, given n points in Rd, achieves space us-
age in O(dn), preprocessing time in O(dn log n), and
query time in O(dnρ log n), where ρ is proportional to
1 − 1/ln lnn, for fixed ε ∈ (0, 1). The dimension re-
duction is larger if one assumes that pointsets possess
some structure, namely bounded expansion rate. We
present experimental results in up to 500 dimensions
and 105 points.

1 Introduction

Nearest neighbor searching is a fundamental compu-
tational problem. Let X be a set of n points in Rd and
let d(p, p′) be the (Euclidean) distance between any
two points p and p′. The problem consists in building
a data structure which reports, given a query point q,
a point p ∈ X s.t. d(p, q) ≤ d(p′, q), for all p′ ∈ X and
p is said to be a nearest neighbor of q. However, an
exact solution to high-dimensional nearest neighbor
search, in sublinear time, requires prohibitively heavy
resources. Thus, many techniques focus on the less
demanding task of computing the approximate near-
est neighbor (ε-ANN). Given a parameter ε ∈ (0, 1),
a (1+ ε)-approximate nearest neighbor to a query q is
a point p in X s.t. d(q, p) ≤ (1 + ε) · d(q, p′), ∀p′ ∈ X.

Sec. 2 introduces our embeddings to dimension
lower than predicted by the Johnson-Linderstrauss
lemma. Sec. 3 states our main results about ε-ANN
search. Sec. 4 generalizes our discussion so as to ex-
ploit bounded expansion rate, and Sec. 5 presents ex-

∗This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through
the Operational Program ”Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF) - Re-
search Funding Program: THALIS UOA (MIS 375891).
†Dept. of Mathematics, University of Athens, Greece,

aneva@math.uoa.gr, i.psarros@di.uoa.gr
‡Dept. of Informatics & Telecommunications, University of

Athens, Greece, emiris@di.uoa.gr

periments. This extended abstract reformulates and
summarizes results from [AEP15] where missing de-
tails and omitted proofs can be found.

In [AMN+98] they introduced the Balanced Box-
Decomposition (BBD) trees. BBD-trees achieve
query time O(c log n) with c ≤ d/2d1 + 6d/εed, using
space inO(dn), and preprocessing time inO(dn log n).
An approximation to the k ≥ 1 nearest neighbors
can be computed at an extra cost of O(k · d log n).
Another data structure is the Approximate Voronoi
Diagrams which are shown to establish a space/time
tradeoff [AMM09]. For high dimensions, one might
apply the Johnson-Lindenstrauss lemma and map the
points to O( logn

ε2 ) dimensions which however requires
prohibitive resources when ε� 1.

In high dimensional spaces, space partitioning data
structures are affected by the curse of dimensionality.
An important method conceived for high dimensional
data is locality sensitive hashing (LSH). In general,
LSH requires roughly O(dn1+ρ) space and O(dnρ)
query time for some parameter ρ ∈ (0, 1). Lately,
it was shown that one can achieve ρ ≤ 7

8(1+ε)2 +

O( 1
(1+ε)3 )+o(1) [AINR14]. For comparison, in Thm. 6

we show that it is possible to use O(dn) space, with
query time roughly O(dnρ) where ρ < 1 is now higher
than the one appearing in LSH.

In [KR02], they introduce the notion of expansion
rate c for an arbitrary metric which is more restrictive
than that of the doubling dimension (See Sec. 4 for
definitions). In Thm. 8, we provide a data structure
for the ε-ANN problem in the Euclidean metric with
O(dn) space and O((C1/ε3 + log n)dlog n/ε2) query
time, where C depends on c.

2 Low Quality Randomized Embeddings

In the following, we denote by ‖ · ‖ the Euclidean
norm and by | · | the cardinality of a set. The Johnson
and Lindenstrauss lemma states that for any set X ⊂
Rd, ε ∈ (0, 1) there exists a distribution over linear
mappings f : Rd −→ Rd′ , where d′ = O(log |X|/ε2),
s.t. ∀p, q ∈ X, (1 − ε)‖p − q‖2 ≤ ‖f(p) − f(q)‖2 ≤
(1 + ε)‖p− q‖2.

In the initial proof [JL84], they show that this can
be achieved by orthogonally projecting the pointset on
a random linear subspace of dimension d′. In [DG02],
they provide a proof based on elementary probabilis-
tic techniques. In [IM98], they prove that it suffices to

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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apply a gaussian matrix on the pointset, or even sim-
pler a matrix whose entries are independent random
variables with uniformly distributed values in {−1, 1}.
However, it has been realized [IN07] that this notion
of randomized embedding is stronger than what is re-
quired for the ε-ANN problem.

Definition 1 [IN07] Let (Y, dY ), (Z, dZ) be metric
spaces and X ⊆ Y . A distribution over mappings
f : Y → Z is a nearest-neighbor preserving embed-
ding with distortion D ≥ 1 and probability of success
P ∈ [0, 1], if for ε > 0 and ∀q ∈ Y , with proba-
bility at least P , when x ∈ X is such that f(x) is
an (1 + ε)−approximate nearest neighbor of f(q) in
f(X), then x is a (D · (1 + ε))−approximate nearest
neighbor of q in X.

Let X be a set of n points in Rd, let q ∈ Rd and
1 ≤ k ≤ n. The problem of computing an approxi-
mation of the k nearest points (ε-kANNs) consists in
reporting a sequence S = {p1, · · · , pk} of k distinct
points s.t. the i-th point is an (1 + ε) approxima-
tion to the i-th nearest neighbor of q. Furthermore,
Asmp. 1 is satisfied by BBD-trees.

Assumption 1 Let S′ ⊆ X be the set of points vis-
ited by the ε-kANNs search s.t. S = {p1, · · · , pk} ⊆
S′ is the set of points which are the k nearest to the
query point q among the points in S′. We assume
that ∀x ∈ X \ S′, d(x, q) > d(pk, q)/(1 + ε).

Assuming the existence of a data structure which
solves ε-kANNs, we can weaken Def. 1 as follows.

Definition 2 Let (Y, dY ), (Z, dZ) be metric spaces
and X ⊆ Y . A distribution over mappings f : Y →
Z is a locality preserving embedding with distortion
D ≥ 1, probability of success P ∈ [0, 1] and locality
parameter k, if for ε > 0 and ∀q ∈ Y , with probability
at least P , when S = {f(p1), · · · , f(pk)} is a solution
to ε-kANNs for q under Asmp. 1, then ∃f(x) ∈ S such
that x is a D · (1 + ε)−approximate nearest neighbor
of q in X.

Hence, we reduce the problem of ε-ANN in dimen-
sion d to the problem of ε-kANNs in dimension d′ < d.

Lemma 1 [DG02] There exists a distribution over
linear maps A : Rd → Rd′ s.t., for any p ∈ Rd with
‖p‖ = 1:

• if β < 1 then Pr[‖Ap‖2 ≤ β2 · d′d ] ≤ exp(d
′

2 (1 −
β2 + 2 lnβ),

• if β > 1 then Pr[‖Ap‖2 ≥ β2 · d′d ] ≤ exp(d
′

2 (1 −
β2 + 2 lnβ).

The following lemma is proved by induction [AEP15].

Lemma 2 ∀i ∈ N, ε ∈ (0, 1),

(1 + ε/2)2

(2i(1 + ε))2
− 2 ln

(1 + ε/2)

2i(1 + ε)
− 1 > 0.05(i+ 1)ε2.

Lemma 3 A simple calculation shows that ∀x > 0,

(1 + x)2

(1 + 2x)2
−2 ln(

1 + x

1 + 2x
)−1 < (1+x)2−2 ln(1+x)−1.

Theorem 4 Under the notation of Def. 2, there ex-
ists a randomized mapping f : Rd → Rd′ which sat-
isfies Def. 2 for d′ = O(log n

δk/ε
2), D = 1 + ε and

P = 1− δ, for any constant δ ∈ (0, 1).

Proof. Let X be a set of n points in Rd and consider
map f : Rd → Rd′ : v 7→

√
d/d′ · A v, where A is a

matrix as in Def. 2. Wlog the query point q lies in
the origin and its nearest neighbor u lies at distance
1 from q. We denote by c ≥ 1 the approximation
ratio guaranteed by the assumed data structure. In
other words, the assumed data structure solves the
(c− 1)-kANNs problem.

For each point x, Lx = ‖Ay‖2 where y = x/‖x‖.
Let N be the random variable whose value indicates
the number of “bad” candidates, that is

N = | {x ∈ X : ‖x− q‖ > γ ∧ Lx ≤
β2

γ2
· d
′

d
} |,

where we define β = c(1 + ε/2), γ = c(1 + ε). Hence,

by Lem. 1, E[N ] ≤ n · exp(d′2 (1 − β2

γ2 + 2 ln β
γ )). By

Markov’s inequality,

Pr[N ≥ k] ≤ E[N ]

k
≤ n

k
· exp(d

′

2
(1− β2

γ2
+ 2 ln

β

γ
)).

The event of failure is defined as the disjunction of
two events: [N ≥ k ] ∨ [Lu ≥ (β/c)2d′/d ], and its
probability is at most equal to

Pr[N ≥ k] + exp(
d′

2
(1− (β/c)2 + 2 ln(β/c))),

by applying again Lem. 1. Now, we bound these two
terms. For the first we choose d′ s.t.

d′ ≥ 2
ln 2n

δk
β2

γ2 − 1− 2 ln β
γ

. (1)

Therefore,

exp(d
′

2 (1− β2

γ2 + 2 ln β
γ ))

k
≤ δ

2n
=⇒ Pr[N ≥ k] ≤ δ

2
.

(2)
Notice that k ≤ n and due to Lem. 2, we obtain

(β/γ)2−2 ln(β/γ)−1 < (β/c)2−2 ln(β/c)−1. Hence,

inequality (1) implies d′ ≥ 2
ln 2
δ

(β/c)2−1−2 ln(β/c) =⇒

=⇒ exp(
d′

2
(1− (β/c)2 + 2 ln(β/c))) ≤ δ

2
. (3)

Inequalities (2), (3) imply that the total probability
of failure is at most δ. By Lem. 2 there exists d′ =
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O(log n
δk/ε

2) and with probability of success at least
1− δ, ‖f(q)− f(u)‖ ≤ (1 + ε

2 )‖u− q‖ and N < k.
Now assume success and let S = {f(p1), ..., f(pk)}

a solution of the (c − 1)-kANNs problem in f(X),
satisfying Asmp. 1. We have that ∀f(x) ∈ f(X) \ S′,
‖f(x)− f(q)‖ > ‖f(pk)− f(q)‖/c where S′ is the set
of all points visited by the search routine.

Now, if f(u) ∈ S then S contains the projection of
the nearest neighbor. If f(u) /∈ S then if f(u) /∈ S′,

‖f(pk)− f(q)‖ < c‖f(u)− f(q)‖ ≤ c(1 + ε/2)‖u− q‖.

Hence, ∃f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u − q‖.
Finally, if f(u) /∈ S but f(u) ∈ S′,

‖f(pk)− f(q)‖ ≤ ‖f(u)− f(q)‖ ≤ (1 + ε/2)‖u− q‖

and ∃f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u− q‖.
�

3 Approximate Nearest Neighbor Search

Notice, that BBD-trees satisfy the Asmp. 1. The ε-
kANNs search, visits cells in increasing order with
respect to their distance from the query and it stops
when the current cell lies in distance > rk/c where rk
is the current distance to the kth nearest neighbor.
We set D = 1 + ε, thus relating approximation error
to the allowed distortion; this is not required but sim-
plifies the analysis. Our analysis then focuses on the
asymptotic behaviour of the term d1 + 6d

′

ε ed
′
+ k.

Lemma 5 With the above notation, there exists k >
0 s.t., for fixed ε ∈ (0, 1), it holds that d1+6d

′

ε ed
′
+k =

O(nρ), where ρ ≤ 1− ε2/ĉ(ε2 + ln(max( 1
ε , lnn))) < 1

for some constant ĉ > 1.

Proof. Recall that d′ ≤ c̃
ε2 ln n

k for some constant
c̃ > 0. The constant δ is hidden in c̃. Let k = nρ.
Obviously d1 + 6d

′

ε ed
′ ≤ (c′ d

′

ε )d
′
, for some c′ ∈ (1, 7).

(c′
d′

ε
)d
′

= n
c̃(1−ρ)
ε2

ln(
c̃c′(1−ρ) lnn

ε3
). (4)

We assume ε ∈ (0, 1) is a fixed constant. Hence, it
is reasonable to assume that 1

ε < n. We consider two
cases when comparing lnn to ε:

• 1
ε ≤ lnn. Substituting ρ = 1 − ε2

2c̃(ε2+ln(c′ lnn))

into equation (4), the exponent of n is bounded

as follows: c̃(1−ρ)
ε2 ln( c̃c

′(1−ρ) lnn
ε3 ) < ρ.

• 1
ε > lnn. Substituting ρ = 1 − ε2

2c̃(ε2+ln c′
ε )

into

equation (4), the exponent of n is bounded by ρ.
�

Combining Thm. 4 with Lem. 5 yields Thm. 6.

Theorem 6 (Main) Given n points in Rd, there
exists a randomized data structure which requires

O(dn) space and reports an (1+ε)2-approximate near-
est neighbor in time O(dnρ log n), where ρ ≤ 1 −
ε2/ĉ(ε2 + ln(max( 1

ε , lnn))) for some constant ĉ > 1.
The preprocessing time isO(dn log n). For each query,
preprocessing succeeds with constant probability.

Proof. The size of the input dataset is O(dn). The
space used by BBD-trees is O(d′n) and we also need
O(dd′) space for the matrix A. Hence, since d′ < d
and d′ < n, the total space usage is O(dn).

Building the BBD-tree costs O(d′n log n) time. We
sample a d′-dimensional random subspace as follows.
We sample in time O(dd′), a d × d′ matrix whose
entries are independent random variables with the
standard normal distribution. Then, we orthonormal-
ize with Gram-Schmidt in time O(dd′2). Since d′ =
O(log n), the total preprocessing time is O(dn log n).

We need O(dd′) time to project each query. Next,
we compute its ε-nρANNs in time O(d′nρ log n) and
we check them with their real coordinates in time
O(dnρ). Hence, each query costs O(dnρ log n). �

4 Bounded Expansion Rate

This section models the structure that the data may
have so as to obtain more precise bounds. To this end,
we consider pointsets with bounded expansion rate.

Definition 3 Let M a metric space and X ⊆ M a
finite pointset and let Bp(r) denote the points of X
lying in the ball centered at p with radius r. We say
that X has (ρ, c)-expansion rate if and only if, ∀p ∈M
and r > 0, |Bp(r)| ≥ ρ =⇒ |Bp(2r)| ≤ c · |Bp(r)|.

Theorem 7 There exists a randomized mapping f :

Rd → Rd′ which satisfies Def. 2 for d′ = O(
log(c+ ρ

δk )

ε2 ),
D = 1 + ε and P = 1− δ, for any constant δ ∈ (0, 1),
for pointsets with (ρ, c)-expansion rate.

Proof. (Sketch) We proceed in the same spirit as in
the proof of Thm. 4, and using the notation from that
proof. Let r0 be the distance to the ρ−th nearest
neighbor, excluding neighbors at distance ≤ 1+ε. For
i > 0, let ri = 2 · ri−1 and set r−1 = 1 + ε. E[N ] ≤
∞∑

i=0

ciρ · exp(d
′

2
(1− (1 + ε/2)2

22i(1 + ε)2
+ 2 ln

1 + ε/2

2i(1 + ε)
)).

By Lem. 2 and for d′ ≥ 40 · ln(c+ 2ρ
kδ )/ε2, E[N ] ≤

ρ
∞∑

i=0

ci·(1

c
)i+1·( 1

1 + 2ρ
kcδ

)i+1 =
ρ

c

∞∑

i=0

(
1

1 + 2ρ
kcδ

)i+1 =
kδ

2
.

Finally, Pr[N ≥ k] ≤ E[N ]
k ≤ δ

2 . �

Employing Thm. 7 we obtain a result analogous to
Thm. 6 which underlines our scheme’s sensitivity to
real world assumptions.
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Theorem 8 Given n points in Rd with (lnn, c)-
expansion rate, there exists a randomized data struc-
ture which requires O(dn) space and O(dn log n) pre-
processing time and reports an (1 + ε)2-approximate

nearest neighbor in time O((C1/ε3 + log n)dlog n/ε2),
for some C depending on c. For each query, prepro-
cessing succeeds with constant probability.

5 Experiments
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Figure 1: Plot of k as n increases. We also show
functions of the form nρ, ρ < 1 for comparison.

We follow the “planted nearest neighbor model”
procedure for our datasets, which is described in
[DI04]. This model, which is motivated by real ap-
plications, guarantees for each query q the existence
of a few approximate nearest neighbors while keep-
ing all other points sufficiently far from q. These
datasets constitute a worst-case input for our ap-
proach since every query point has exactly one nearest
neighbor and has many points lying near the bound-
ary of (1 + ε). Following the above scheme we cre-
ate datasets for different values of n, d, ε and for each
query point we plant one neighbor at distance R = 2
whereas all other points lie at distance > (1 + ε)R.

We use a random mapping f : Rd 7→ Rd′ where
d′ = logn

log logn using a gaussian matrix G, where each

entry Gij ∼ N(0, 1). Then, we count the number
of points lying between f(q) and its actual nearest
neighbor which is the optimal k for q. In Figure 1 we
present the average value of k for increasing number
of points n. The resulting curve has an intrinsic con-
cavity, which shows that the dependency of k on n is
sublinear. While choosing k as in Thm. 4 is quite pes-
simistic, it is an open question whether there exists a
method for choosing k depending on the pointset.

Next, we build a BBD-tree on the projected data
points using the ANN library. Having fixed k =

√
n,

we measure the average time needed, for each query q,
to find its ε-kANNs in the projected space and then
to find the point which lies in distance ≤ R. We
compare these times to the average times reported by
the E2LSH R-near neighbor queries. We require from
both approaches to have accuracy > 0.90. It is clear
from Figure 2 that E2LSH is faster than our approach
by a factor of 3, however it requires more space.
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Figure 2: Our embedding approach against E2LSH.

References

[AEP15] E. Anagnostopoulos, I. Z. Emiris and
I. Psarros, Low-quality dimension reduction and
high-dimensional Approximate Nearest Neigh-
bor. In arXiv:1412.1683, to appear in SoCG 2015.

[AINR14] A. Andoni, P. Indyk, H.L. Nguy En and
I. Razenshteyn, Beyond Locality-Sensitive Hash-
ing. In Proc. SODA, 2014.

[AMM09] S. Arya, T. Malamatos, and D. M. Mount.
Space-time tradeoffs for approximate nearest
neighbor searching. J. ACM, 57(1):1–54, 2009.

[AMN+98] S. Arya, D.M. Mount, N.S. Netanyahu,
R. Silverman and A.Y. Wu. An Optimal Algo-
rithm for Approximate Nearest Neighbor Search-
ing Fixed Dimensions. J. ACM, 45(6):891–923,
1998.

[DG02] S. Dasgupta and A. Gupta, An Elemen-
tary Proof of a Theorem of Johnson and Linden-
strauss, In Random Struct. Algorithms, 22:60–65,
2003.

[DI04] M. Datar, N. Immorlica, P. Indyk and
V. S. Mirrokni Locality-sensitive hashing scheme
based on p-stable distributions, In Proc. SoCG,
253–262, 2004.

[IM98] P. Indyk and R. Motwani. Approximate Near-
est Neighbors: Towards Removing the Curse of
Dimensionality, In Proc. STOC, 604–613, 1998.

[IN07] P. Indyk and A. Naor. Nearest-neighbor-
preserving embeddings. ACM Trans. Algorithms,
3(3), 2007.

[JL84] W. B. Johnson and J. Lindenstrauss, Exten-
sions of Lipschitz mappings into a Hilbert space,
Contemp. Math 26 (1984), 189–206.

[KR02] D. R. Karger and M. Ruhl, Finding Nearest
Neighbors in Growth-restricted Metrics, In Proc.
STOC, 741–750, 2002.

247



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Time-Space Trade-offs for Voronoi Diagrams
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Abstract

Let S be a planar n-point set. Classically, one can
find the Voronoi diagram VD(S) for S in O(n log n)
time and O(n) space. We study the situation when
the available workspace is limited: for s ∈ {1, . . . , n},
an s-workspace algorithm has read-only access to an
input array with the points from S in arbitrary order,
and it may use only O(s) additional words of Θ(log n)
bits for reading and writing intermediate data. We
describe a randomized s-workspace algorithm for
finding VD(S) in expected time O((n2/s) log s +
n log s log∗ s). This almost matches the optimal run-
ning times for both constant and linear workspace and
provides a continuous trade-off between them.

1 Introduction

Since the beginning of computer science, there has
been interest in algorithms that can deal with strong
memory constraints. This started in the early 70’s [10]
when memory was expensive, but now it is motivated
by the proliferation of small embedded devices where
a lot of memory is neither feasible nor desirable.

Even when space is not an issue, one might want to
limit the number of write operations: even though one
can read flash memory very fast, writing (or even re-
ordering) data is slow and reduces the lifetime; write-
access to removable memory is sometimes limited for
technical or security reasons; similar problems occur
when concurrent algorithms need to access the same
data and create concurrency problems. A way to deal
with this is to consider algorithms that do not modify
the input, and use as few variables as possible.

The exact setting may vary, but there is a common
theme: the input resides in a read-only data struc-
ture, the output must be written to some write-only
structure, and we can use O(s) additional variables to
compute the solution (for a given parameter s). Our
aim is to design algorithms whose running time de-
creases as s grows, giving a time-space trade-off [11].

One of the initial problems considered in this model

∗National Institute of Informatics (NII), Tokyo, Japan;
JST, ERATO, Kawarabayashi Large Graph Project. {korman,
andre}@nii.ac.jp
†Institut für Informatik, Freie Universität Berlin, Germany.

{mulzer,pseiferth,yannikstein}@inf.fu-berlin.de
‡Tohoku University, Japan. marcel@dais.is.tohoku.ac.jp

is sorting [7, 8]. It is known that the time-space
product of any sorting algorithm is Ω(n2) [5], and
matching upper bounds for the case b ∈ Ω(log n) ∩
O(n/ log n) were obtained by Pagter and Rauhe [9] (b
denotes the size of the workspace, in bits). Since the
sorted list cannot be stored explicitly in memory, we
must report the values one by one in order.

The concept of memory constrained algorithms was
introduced to computational geometry by Asano et
al. [2]. They show how to compute many classic ge-
ometric structures with O(1) workspace. Afterwards,
several time-space trade-off algorithms have been de-
signed for classic problems within a simple polygon,
such as shortest path computation [1], visibility [4],
or computing the convex hull of a simple polygon [3].

Problem Setting. We are given a list S of n points
in the plane. We assume that the points are in some
structure (say, an array) that allows random access to
any point. We would like to design an algorithm that
computes the Voronoi diagram of S, VD(S). Since the
diagram itself cannot be explicitly stored in memory,
the aim is to report its vertices one by one in a write-
only data structure in no particular order. In addition
to the input, the algorithm can use O(s) variables (for
some parameter s ≤ n). We assume that each variable
or pointer contains a data word of Θ(log n) bits.

Our aim is an algorithm whose running time de-
creases as s grows. Ideally, we would like that the
trade-off is continuous and that the running times
for both extremes of s match with the currently
best known algorithms for these cases (O(n2) and
O(n log n) time for s = 1 and s = n, respectively).
As we will see below, we can almost achieve this goal.

2 Voronoi Diagrams Through Random Sampling

Given a planar n-point set S, we would like to find the
vertices of VD(S). Let K = {p1, p2, p3} be a triangle
with S ⊆ conv(K) so that all vertices of VD(S) are
vertices of VD(S ∪K). We use random sampling to
divide the problem of computing VD(S∪K) into O(s)
subproblems of size O(n/s). First, we show how to
take a random sample from S with small workspace.

Lemma 1 We can sample a uniform random subset
R ⊆ S of size s in time O(n+ s log s) and space O(s).

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

248



31st European Workshop on Computational Geometry, 2015

Proof. We sample a random sequence I of s distinct
numbers from {1, . . . , n}. This is done in s rounds.
At the beginning of round k, for k = 1, . . . , s, we have
a sequence I of k − 1 numbers from {1, . . . , n}. We
store I in a binary search tree T . We maintain the
invariant that each node in T with value in {1, . . . , n−
k + 1} stores a pointer to a unique number in {n −
k+2, . . . , n} that is not in I. In round k, we sample a
random number x from {1, . . . , n−k+1}, and we check
in T whether x ∈ I. If not, we add x to I. Otherwise,
we add to I the number that x points to. Let y be
the new element. We add y to T . Then we update
the pointers: if x = n − k + 1, we do nothing. Now
suppose x < n−k+1. Then, if n−k+1 6∈ I, we put a
pointer from x to n−k+1. Otherwise, if n−k+1 ∈ I,
we let x point to the element that n−k+ 1 points to.
This keeps the invariant and takes O(log s) time and
O(s) space. We continue for s rounds. Any sequence
of s distinct numbers in {1, . . . , n} is sampled with
equal probability.

Finally, we scan through S to obtain the elements
whose positions correspond to the numbers in I. This
requires O(n) time and O(s) space. �

We use Lemma 1 to find a random sample R ⊆ S
of size s. We compute VD(R ∪ K), triangulate the
bounded cells and construct a planar point location
structure for the triangulation. This takes O(s log s)
time and O(s) space. Given a vertex v ∈ VD(R∪K),
the conflict circle of v is the largest circle with center
v and no point from R∪K in its interior. The conflict
set Bv of v contains all points from S that lie in the
conflict circle of v, and the conflict size bv of v is the
number of points in Bv. We scan through S to find
the conflict size bv for each vertex v ∈ VD(R ∪ K):
every Voronoi vertex has a counter that is initially 0.
For each p ∈ S \ (R ∪K), we use the point location
structure to find the triangle ∆ of VD(R ∪ K) that
contains it. At least one vertex v of ∆ is in conflict
with p. Starting from v, we walk along the edges of
VD(R∪K) to find all Voronoi vertices in conflict with
p. We increment the counters of all these vertices.
This may take a long time in the worst case, so we im-
pose an upper bound on the total work. For this, we
choose a threshold M . When the sum of the conflict
counters exceeds M , we start over with a new sample
R. The total time for one attempt is O(n log s+M),
and below we prove that for M = Θ(n) the success
probability is at least 3/4. Next, we pick another
threshold T , and we compute for each vertex v of
VD(R ∪K) the excess tv = bvs/n. The excess mea-
sures how far the vertex deviates from the desired con-
flict size n/s. We check if

∑
v∈VD(R∪K) tv log tv ≤ T .

If not, we start over with a new sample. Below, we
prove that for T = Θ(s), the success probability is
at least 3/4. The total success probability is 1/2,
and the expected number of attempts is 2. Thus,

in expected time O(n log s + s log s), we can find a
sample R ⊆ S with

∑
v∈VD(R∪K) bv = O(n) and∑

v∈VD(R∪K) tv log tv = O(s).
We now analyze the success probabilities, using the

classic Clarkson-Shor method. We begin with the fol-
lowing version of the Chazelle-Friedman bound [6].

Lemma 2 Let X be a planar point set of size o, and
let Y ⊂ R2 with |Y | ≤ 3. For fixed p ∈ (0, 1], let
R ⊆ X be a random subset of size po and let R′ ⊆ X
be a random subset of size p′o, for p′ = p/2. Suppose
that p′o ≥ 4. Fix u ∈ X3, and let vu be the Voronoi
vertex defined by u. Let bu be the number of points
from X in the largest circle with center vu and with
no points from R in its interior. Then,

Pr[vu ∈ VD(R∪Y )] ≤ 64e−pbu/2 Pr[vu ∈ VD(R′∪Y )].

Proof. Let σ = Pr[vu ∈ VD(R ∪ Y )] and σ′ =
Pr[vu ∈ DT(R′ ∪ Y )]. The vertex vu is in VD(R∪ Y )
precisely if u ⊆ R ∪ Y and Bu ∩ (R ∪ Y ) = ∅, where
Bu are the points from X in the conflict circle of vu.
If Y ∩Bu 6= ∅, then σ = σ′ = 0, and the lemma holds.
Thus, assume that Y ∩Bu = ∅. Let du = |u \ Y |, the
number of points in u not in Y . There are

(
o−bu−du
po−du

)

ways to choose a po-subset from X that avoids all
points in Bu and contains all points of u ∩X, so

σ =

(
o− bu − du
po− du

)/(
o

po

)

=

∏po−du−1
j=0 (o− bu − du − j)
∏po−du−1
j=0 (po− du − j)

/ ∏po−1
j=0 (o− j)

∏po−1
j=0 (po− j)

=

du−1∏

j=0

po− j
o− j ·

po−du−1∏

j=0

o− bu − du − j
o− du − j

≤ pdu
po−du−1∏

j=0

(
1− bu

o− du − j

)
.

Similarly, we get

σ′ =

du−1∏

i=0

p′o− i
o− i

p′o−du−1∏

j=0

(
1− bu

o− du − j

)
,

and since p′o ≥ 4 and i ≤ 2, it follows that

σ′ ≥
(
p′

2

)du p′o−du−1∏

j=0

(
1− bu

o− du − j

)
.

Therefore, since p′ = p/2,

σ

σ′
≤
(

2p

p′

)du po−du−1∏

j=p′o−du

(
1− bu

o− du − j

)

≤ 64

(
1− bu

o

)po/2
≤ 64 epbu/2.

�
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We can now bound the total expected conflict size.

Lemma 3 We have E
[∑

v∈VD(R∪K) bv

]
= O(n).

Proof. By expanding the expectation, we get

E


 ∑

v∈VD(R∪K)

bv


 =

∑

u∈S3

Pr[vu ∈ VD(R ∪K)]bu,

vu being the Voronoi vertex of u and bu its conflict
size. By Lemma 2 with X = S, Y = K and p = s/n,

≤
∑

u∈S3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]bu,

where R′ ⊆ S is a sample of size s/2. We estimate

≤
∞∑

t=0

∑

u∈S3

bu∈[ t
p ,

t+1
p )

64e−t/2(t+ 1)

p
Pr[vu ∈ VD(R′ ∪K)]

≤ 1

p

∑

u∈S3

Pr[vu ∈ VD(R′ ∪K)]
∞∑

t=0

64e−t/2(t+ 1)

= O(s/p) = O(n),

since
∑

u∈S3 Pr[vu ∈ VD(R′ ∪K)] = O(s) is the size

of VD(R′ ∪K) and
∑∞
t=0 e

−t/2(t+ 1) = O(1). �

By Lemma 3 and Markov’s inequality, there is anM =
Θ(n) with Pr[

∑
v∈VD(R∪K) bv > M ] ≤ 1/4.

Lemma 4 E
[∑

v∈VD(R∪K) tv log tv

]
= O(s).

Proof. By Lem. 2 with X = S, Y = K, and p = s/n,

E


 ∑

v∈VD(R∪K)

tv log tv




=
∑

u∈S3

Pr[vu ∈ VD(R ∪K)] tu log tu

≤
∑

u∈S3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]tu log tu

≤
∞∑

t=0

∑

u∈S3

bu∈[ t
p ,

t+1
p )

64e−
t
2 (t+ 1)2 Pr[vu ∈ VD(R′ ∪K)]

≤
∞∑

t=0

64e−t/2(t+ 1)2
∑

u∈S3

Pr[vu ∈ VD(R′ ∪K)]

= O(s).

�

By Markov’s inequality and Lemma 4, there is a T =
Θ(s) with Pr[

∑
v∈VD(R∪K) tv log tv ≥ T ] ≤ 1/4. This

finishes the first phase of the sampling.
Let α > 0 be a sufficiently large constant. The

next goal is to sample for each vertex v with tv ≥ 2 a
random subset Rv ⊆ Bv of size αtv log tv (recall that
Bv is the conflict set of v).

Lemma 5 In total time O(n log s), we can sample
for each vertex v ∈ VD(R∪K) with tv ≥ 2 a random
subset Rv ⊆ Bv of size αtv log tv.

Proof. First, we perform O(s) rounds to sample for
each vertex v with tv ≥ 2 a sequence Iv of αtv log tv
distinct numbers from {1, . . . , bv}. For this, we use the
algorithm from Lemma 1 in parallel for each relevant
vertex from VD(R ∪ K). Since

∑
v tv log tv = O(s),

this takes total time O(s log s) and total space O(s).
After that, we scan through S. For each vertex v,

we have a counter cv, initialized to 0. For each p ∈ S,
we find the conflict vertices of p, and for each conflict
vertex v, we increment cv. If cv appears in the corre-
sponding set Iv, we add p to Rv. The total running
time is O(n log s), as we do one point location for each
input point and the total conflict size is O(n). �

We next show that for a fixed vertex v ∈ VD(R∪K),
with constant probability, all vertices in VD(Rv) have
conflict size n/s with respect to Bv.

Lemma 6 Let v ∈ VD(R ∪K) with tv ≥ 2, and let
Rv ⊆ Bv be the sample for v. The expected number
of vertices v′ in VD(Rv) with at least n/s points from
Bv in their conflict circle is at most 1/2.

Proof. Recall that tv = bvs/n. We have

E

[ ∑

v′∈VD(Rv)
b′
v′≥n/s

1

]
=

∑

u∈B3
v

b′u≥n/s

Pr[v′u ∈ VD(Rv)],

where b′u is the conflict size of v′u with respect to
Bv. Using Lemma 2 with X = Bv, Y = ∅, and
p = (αtv log tv)/bv = α(s/n) log tv, this is

≤
∑

u∈B3
v

b′u≥n/s

64e−pb
′
u/2 Pr[v′u ∈ VD(R′v)]

≤ 64e−(α/2) log tv
∑

u∈B3
v

Pr[v′u ∈ VD(R′v)]

= O(t−α/2v tv log tv) ≤ 1/2,

for α large enough (remember that tv ≥ 2). �

By Lemma 6 and Markov’s inequality, the probabil-
ity that all vertices from VD(Rv) have at most 2n/s
points from Bv in their conflict circles is at least 1/2.
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If so, we call v good. Scanning through S, we can
identify the good vertices in time O(n log s) and space
O(s). The expected number of good vertices is s′/2,
where s′ is the size of VD(R∪K). For the remaining
vertices, we repeat the process with new random sam-
ples, but this time we take two samples per vertex, de-
creasing the failure probability to 1/4. We repeat the
process, taking in each round the maximum number
of samples that fit into the work space. In general, if
we have s′/ai active vertices in round i, we can take ai
samples per vertex, resulting in a failure probability
of 2−ai . Thus, the expected number of active vertices
in round i+ 1 is s′/ai+1 = s′/(ai2ai). After O(log∗ s)
rounds, all vertices are good. To summarize:

Lemma 7 In total expected time O(n log s log∗ s)
and space O(s), we can find sets R ⊆ S and Rv ⊂ Bv
for each vertex v ∈ VD(R′ ∪K) such that (i) |R| = s:
(ii)

∑
v∈VD(R∪K) |Rv| = O(s); and (iii) for every Rv,

all vertices of VD(Rv) have at most 2n/s points from
Bv in their conflict circle.

We set R2 = R ∪ ⋃v∈VD(R∪K)Rv. By Lemma 7,

|R2| = O(s). We compute VD(R2 ∪K) and triangu-
late its bounded cells. For a triangle ∆ of the triangu-
lation, let r ∈ R2 ∪K be the site whose cell contains
∆, and v1, v2, v3 the vertices of ∆. We set B∆ =
{r} ∪⋃3

i=1Bvi . One can show that |B∆| = O(n/s).

Lemma 8 For every triangle ∆ in the triangulation
of VD(R2∪K), we have VD(S∪K)∩∆ = VD(B∆)∩∆.

Proof. Let v1, v2, v3 be the vertices of ∆ and let r ∈
R2 ∪ K be the point whose cell contains ∆. Fix a
point x ∈ ∆, and let C be a circle with center x and
no points from B∆ in its interior. It suffices to show
that C contains no points from S \B∆ in its interior.
Suppose there exists a point p ∈ S \ B∆ that lies
inside of C. Consider the bisector B of p and r. Since
C contains p but not r, we have d(x, p) < d(x, r), so
x lies on the same side of B as p. Since x ∈ ∆, at
least one of v1, v2, v3, is on the same side of B as p;
say v1. This means that d(v1, p) < d(v1, r), so p lies
inside the circle around v1 with r on the boundary.
This is precisely the conflict circle of v1. �

Theorem 9 Let S be a planar n-point set. In ex-
pected time O((n2/s) log s + n log s log∗ s) and space
O(s), we can compute all Voronoi vertices of S.

Proof. We compute a set R2 as above. This takes
O(n log s log∗ s) time and space O(s). We triangu-
late the bounded cells of VD(R2 ∪ K) and compute
a point location structure for the result. Since there
are O(s) triangles, we can store the resulting triangu-
lation in the workspace. Now, the goal is to compute
simultaneously for all triangles ∆ the Voronoi diagram
VD(B∆) and to output all Voronoi vertices that lie in

∆ and are defined by points from S. By Lemma 8,
this gives all Voronoi vertices of VD(S).

Given a planar m-point set X, the algorithm by
Asano et al. finds all vertices of VD(X) in O(m) scans
over the input, with constant workspace [2]. We can
perform a simultaneous scan for all sets B∆ by deter-
mining for each point in S all sets B∆ that contain
it. This takes total time O(n log s), since we need one
point location for each p ∈ S and since the total size of
the B∆’s is O(n). We need O(max∆ |B∆|) = O(n/s)
such sweeps, so the second part of the algorithm needs
O((n2/s) log s) time. �
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Linear-Time Algorithms for the Farthest-Segment Voronoi Diagram and
Related Tree Structures∗

Elena Khramtcova† Evanthia Papadopoulou†

Abstract

We present linear-time algorithms to construct Voro-
noi diagrams with disconnected regions, whose graph
structure is a tree, after the sequence of their faces
along an enclosing boundary (or at infinity) is known.
We illustrate our approach on the farthest-segment
Voronoi diagram; however, it is also applicable to
computing the order-(k+1) subdivision within an
order-k segment Voronoi region, and to updating the
nearest-neighbor Voronoi diagram after deletion. It is
also applicable to other sites and metrics.

1 Introduction

It is well known that the Voronoi diagram of points in
convex position can be computed in linear time, given
their convex hull [1]. The same holds for a class of re-
lated diagrams such as the farthest-point Voronoi dia-
gram, computing the medial axis of a convex polygon,
and deleting a point from the nearest-neighbor Voro-
noi diagram. In an abstract setting, a Hamiltonian
abstract Voronoi diagram [8] can be computed in lin-
ear time, given the order of Voronoi regions along an
unbounded simple curve, which visits each region ex-
actly once, and which can intersect each bisector only
once. This linear construction has recently been ex-
tended to include forest structures [4] under the same
conditions of no repetition. The medial axis of a sim-
ple polygon can also be computed in linear time [6].
It is therefore natural to ask what other types of Vo-
ronoi diagrams can be constructed in linear time. In
this paper we address tree-like Voronoi diagrams with
disconnected regions.

Classical variants of Voronoi diagrams, such as
higher-order Voronoi diagrams, for sites other than
points, had been surprisingly ignored in the compu-
tational geometry, until recently [3, 12]. Given a set S
of n simple geometric objects in the plane, called sites,
the order-k Voronoi diagram of S is a partitioning of
the plane into regions, such that every point within a
region has the same k nearest sites. For k = 1, this is
the nearest-neighbor Voronoi diagram; for k = n−1 it

∗Research supported in part by the Swiss National Science
Foundation, project 20GG21-134355, under the ESF EURO-
CORES program EuroGIGA/VORONOI.
†Faculty of Informatics, Università della Svizzera italiana

(USI), Lugano, Switzerland.

is farthest-site Voronoi diagram of S. Despite similar-
ities, these diagrams illustrate fundamental structural
differences from their counterparts for points, such as
the presence of disconnected regions (see also [2, 9]).

In this abstract we give linear-time algorithms
(expected and deterministic) for constructing the
farthest-segment Voronoi diagram, after the sequence
of its faces at infinity is known. The method applies
to constructing the order-(k+1) subdivision within
an order-k Voronoi region, and updating the nearest-
neighbor Voronoi diagram after deletion. Interest-
ingly, the latter problem requires computing initially
two different tree-like diagrams. A major difference
from the respective problems for points is that the
sequence of faces along a relevant enclosing bound-
ary forms a Davenport-Schinzel sequence of order at
least 2,1 unlike points, where no repetition can exist.

The segment counterpart of higher-order Voronoi
diagrams is an important variant for a variety of ap-
plications dealing with polygonal objects or embedded
planar graphs, see e.g., [11] and references therein.

2 Preliminaries and Definitions

Let S be a set of arbitrary line segments in R2, that
may intersect or touch at a single point. The dis-
tance between a point q and a line segment si is
d(q, si) = min{d(q, y),∀y ∈ si}, where d(q, y) denotes
the ordinary distance between two points q, y. The
bisector of two segments si, sj ∈ S is b(si, sj) = {x ∈
R2 | d(x, si) = d(x, sj)}. For disjoint segments, it is an
unbounded curve that consists of a constant number
of pieces, where each piece is portion of an elementary
bisector between the endpoints and open portions of
si, sj . If two segments intersect at point p, their bi-
sector consists of two such curves intersecting at p.

The farthest Voronoi region of a segment si is
freg(si) = {x ∈ R2 | d(x, si) > d(x, sj), 1 ≤ j ≤
n, j 6= i}. The regions of all the segments in S to-
gether with their bounding edges and vertices, define a
partition of the plane, called the farthest-segment Vo-
ronoi diagram FVD(S), see Fig. 1(a). Any maximally-
connected subset of a Voronoi region is called a face.

A farthest Voronoi region freg(si) is non-empty and
unbounded in direction φ if and only if there exists

1Order-3 for the farthest-segment Voronoi diagram, order-2
for disjoint segments or the farthest abstract Voronoi diagram,
and order-4 for the order-k Voronoi diagram of segments.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: [10] (a) FVD(S), S = {s1, . . . , s5}; (b) its
farthest hull; (c) Gmap(S)

an open halfplane, normal to φ, which intersects all
segments in S but si [2]. The line `, normal to φ,
bordering such a halfplane is called a supporting line.
The direction φ (normal to `) is denoted as ν(`) and it
is referred to as the hull direction of `. An unbounded
Voronoi edge between freg(si) and freg(sj) is a por-
tion of b(p, q), where p, q are endpoints of si and sj ,
such that the line through pq induces an open half-
plane that intersects all segments in S, except si, sj
(and possibly except additional segments incident to
p, q). Segment pq is called a supporting segment ; the
direction normal to pq pointing to the inside of this
halfplane is denoted as ν(pq) and it is referred to as
the hull direction of pq. A segment si ∈ S such that
the line ` through si is supporting, is called a hull seg-
ment ; its hull direction is ν(si) = ν(`), Fig. 1(a) and
(b) illustrate a farthest-segment Voronoi diagram and
its hull respectively. In Fig. 1(b), dashed lines show
the supporting segments, and the hull segments are
shown in bold. Arrows show the hull directions of all
supporting and hull segments.

The Gaussian map of FVD(S) (Gmap(S)) provides
a correspondence between the faces of FVD(S) and a
circle of directions K (see Fig. 1(c)) [10]. Each Vo-
ronoi face is mapped to an arc on K, which repre-
sents a set of directions along which the face is un-
bounded. The Gmap(S) can be viewed as a cyclic
sequence of arcs, where each arc corresponds to one
face of FVD(S). Two neighboring arcs are separated
by the hull direction of a supporting segment, which
corresponds to an unbounded Voronoi edge. The arc
of a hull segment consists of two sub-arcs separated
by the hull direction ν of the segment. Gmap(S) can
be computed in O(n log n) time (or output-sensitive
O(n log h), where h = |Gmap(S)|) [10].

The standard point-line duality transformation t of-
fers a correspondence between the faces of FVD(S)
and envelopes of wedges. A segment si = uv is sent
into a lower wedge below (see e.g., Fig. 2) and an
upper wedge above t(u) and t(v) respectively. Let E
(resp., E′) be the boundary of the union of the lower
(resp., upper) wedges. There is a clear correspondence
between E (resp., E′) and the upper (resp., lower)

Gmap: the vertices of E are exactly the hull direc-
tions of supporting segments on the upper Gmap and
the apexes of wedges in E are exactly the hull direc-
tions of hull segments. In fact, any x-monotone path
p in the arrangement of upper (resp., lower) wedges
can be transformed into a sequence of arcs in the up-
per (resp., lower) circle of directions, i.e., the portion
of K above (resp., below) its horizontal diameter.

3 The Farthest Voronoi Diagram of a Sequence

Let G be a sequence of arcs on the circle of directions
K corresponding to a pair of x-monotone paths, one
in the arrangement of upper wedges and one in the
arrangement of lower wedges in dual space. G is called
an arc sequence. For an arc α in G, let sα ∈ S be the
segment associated with it.

Given a point x, x 6∈ sα, consider the ray emanating
from sα that realizes the Euclidean distance between
sα and x. Let r(x, sα) be the unbounded portion of
this ray, starting at x and extending to infinity away
from sα. We say that x is attainable from α if the
direction of r(x, sα) is contained in α. The point(s)
x ∈ sα that induce α are always attainable from α.
Let d(x, α) = d(x, sα) if x is attainable from α; and let
d(x, α) = −∞ otherwise. The locus of points attain-
able from α is referred to as the attainable region of α,
R(α). The bisector between two arcs α, γ (sα 6= sγ) is
b(α, γ) = b(sα, sγ)∩R(α)∩R(γ). The farthest Voronoi
region of α can now be defined in the ordinary way
as freg(α) = {x ∈ R2 | d(x, α) > d(x, γ),∀ arc γ ∈
G, γ 6= α}.

The farthest Voronoi diagram of G, FVD(G), is the
subdivision of the plane obtained by these regions and
their boundaries. Let T (G) = R2 \ ∪α∈Gfreg(α). If
all edges of T (G) are portions of arc bisectors then G,
T (G), and FVD(G) are all called proper. For an arbi-
trary G, T (G) may contain boundaries of attainable
regions and FVD(G) may even contain holes. The
diagrams computed by our algorithms are all proper.

Lemma 1 For a proper arc sequence G, T (G) is a
(connected) tree.

G is called a subsequence of Gmap(S) if every arc in
G entirely contains a corresponding arc in Gmap(S)
induced by the same segment. The arcs in G are ex-
panded versions of the arcs in Gmap(S), and they
are called original arcs. A sequence G′ is called an
augmented subsequence of Gmap(S) if G′ contains at
least one original arc for every segment that appears
in G′. Hence, G′ consists of original and new arcs. If
G′ contains the same original arcs as G then G′ is said
to be corresponding to G. Note that G and G′ are no
longer envelopes of wedges, but simply x-monotone
paths, where (assuming lower wedges) the path of G′

is above (or on) the path of G.
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A subsequence G is derived from Gmap(S) by dele-
tion of arcs. When deleting an arc β, the neighboring
arcs α and γ expand over β. Either both α and γ ex-
pand (see Fig. 2(a) for segments in the dual space, or
Fig. 3(a)-(c)) or one expands while the other shrinks
(see Fig. 2(b)). By the definition of FVD(G), both
α, γ remain in G \ {β} and their common endpoint
is the hull direction of their common supporting seg-
ment, ν(α, γ). If sα = sγ , let ν(α, γ) = ν(sβ). Direc-
tion ν(sβ) corresponds to an artificial bisector b(α, γ)
as defined below in Def. 1. If sα = sβ then α expands
to cover the entire β and ν(α, γ) = ν(β, γ).

Consider now the result of inserting back β between
(the expanded) arcs α, γ (see Fig. 2 illustrating the
corresponding segments in dual space). The result
is αβγ, if both α, γ expanded when removing β, or
αγ′βγ, if α shrunk, or αβα′γ, if γ shrunk, where α′

and γ′ are new arcs of sα and sγ respectively. Thus,
re-inserting β in subsequence G \ {β} results in an
augmented subsequence G′ = (G \ {β}) ∪ {β}, which
may be different from G.

Definition 1 Let α, β, γ be consecutive arcs in G′,
where sα = sγ . Let the artificial bisector b(α, γ) (for
G′) be a ray in the direction of ν(sβ), emanating from
the relevant endpoint pα of sα (see Fig. 3(d)).

4 A Randomized Linear Construction

We give an expected linear-time algorithm to com-
pute FVD(S), given Gmap(S). It is inspired by the
two-phase randomized approach of [5] for points in
convex position, however, it is augmented consider-
ably to handle non-uniqueness and new elements in
the cyclic sequence of arcs.

Let α1, α2, . . . , αh be a random permutation of arcs
in Gmap(S), and let Ai = {α1, α2, . . . , αi}, 1 ≤ i ≤ h,
be the set of the first i arcs in this order. The algo-
rithm proceeds in two phases. Let t be the largest
index such that {α1, . . . , αt} consists of arcs of two
segments resulting in exactly two maximal arcs, where
consecutive arcs of the same segment are joined into
one maximal arc. Phase 1 computes the subsequence
Gi, t ≤ i < h, where Gh = Gmap(Ah), and Gi
is obtained from Gi+1 by removing arc αi+1 as de-
scribed in Sec. 3. The two neighbors of αi+1 in Gi+1

are recorded as a tentative re-entry point for αi+1 in
phase 2. In phase 2, the algorithm computes incre-
mentally G′

i and FVD(G′
i), for t < i ≤ h, starting

with FVD(G′
t), G

′
t = Gt. G′

i+1 is the sequence ob-
tained from G′

i by inserting back arc αi+1.During the
re-entry of αi+1 a new arc may be created. As a result,
G′
i 6= Gi; however, G′

i is an augmented subsequence
of Gmap(S). Because of new arcs, the two recorded
neighbors of αi+1 from phase 1 need not be neighbors
of αi+1 in G′

i+1. Thus, scanning a number of new arcs
may be required to identify an entry point for αi+1.

�
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Figure 2: Deleting and re-inserting β in sequence αβγ.
(a) both α and γ enlarge; (b) γ enlarges and α shrinks.
From left to right: the initial sequence αβγ; the result
of removing β; the result of re-inserting β.
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Figure 3: Sequence αβγ when sα, sγ (a) The dual
wedges; (b) Gi+1; (c) Gi; (d) The ray r splitting
freg(α) and freg(γ).

The entry point is either an unbounded bisector (reg-
ular or artificial), which is deleted from FVD(G′

i+1),
or an arc σ, which entirely contains αi+1. In the lat-
ter case, freg(σ) is split into two faces and freg(αi+1)
is inserted within; a new arc σ′ is created as a re-
sult of the split. At the end of phase 2, we obtain
FVD(G′

h) = FVD(S) (G′
h = Gh).

Lemma 2 The number of arcs in G′
i is at most 2i.

Thus, the complexity of FVD(G′
i) is O(i).

Lemma 3 The expected number of new arcs traced
at any step of phase 2 is constant (at most 1).

Using backwards analysis we can prove that
FVD(S) can be computed in O(h) expected time,
given Gmap(S).

5 A Deterministic Linear Divide-and-Conquer

We now augment the framework of Aggarwal et al. [1]
for points in convex position with techniques from
Secs. 3, 4, and derive a linear-time algorithm to com-
pute the farthest Voronoi diagram, given Gmap(S).
Let G be a subsequence of Gmap(S), and let G′ be a
corresponding augmented subsequence such that the
complexity of G′ is bounded by O(|G|). The flow of
the algorithm follows [8], which in turn follows [1].

1. Unite any consecutive arcs in G of the same seg-
ment into a single maximal arc for that segment.

2. Color each element of G as red or blue, by apply-
ing the following two rules:

(a) For each 5-tuple F of consecutive arcs {α, β,
γ, δ, ε} in G, compute FVD(F ′) by the algorithm
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of Sec. 4 in the fixed deletion order α, ε, β, δ, γ.
Color γ as red, if freg(γ) did not change after the
insertion of ε and α; otherwise, color γ as blue.

(b) For each series of consecutive blue arcs, color
red every other arc except the last arc.

3. Let B be the blue sequence as obtained from G
by deleting all red arcs. Recursively compute
FVD(B′). (B′ is an augmented version of B.)

4. Re-color as crimson at least a constant fraction of
the red arcs, such that for any two crimson arcs,
if they were inserted in FVD(B′), their Voronoi
regions would not be neighboring.

5. Insert the crimson arcs one by one in FVD(B′),
resulting in FVD(V ′).

6. Let Gr (garnet) be the sequence obtained from G
by deleting all blue and crimson arcs. Recursively
compute FVD(Gr′).

7. Merge FVD(V ′) and FVD(Gr′) into FVD(G′).
8. For any arcs that were united in Step 1, subdi-

vide their regions in FVD(G′) into finer parts by
inserting the corresponding artificial bisectors.

The recursion ends when G has at most two maxi-
mal arcs. The appearance of new arcs requires a new
handling for several steps of the algorithm. The num-
ber of new arcs must always remain bounded.

At the end of Step 2, the following holds: (1) No
two consecutive arcs in G are red and no three con-
secutive arcs in G are blue. (2) For any two con-
secutive red arcs α, β in G, if α and β were inserted
in FVD(B′), their Voronoi regions would be disjoint.
These statements can be proven following the spirit of
[8, Lemmas 8 and 9], however, the appearance of new
arcs and the dependence of the result on the deletion
order requires a new handling. The order of arc dele-
tion given in Step 2 is such as to keep bounded the
number of new arcs that surround γ in F ′.

Step 4 can be performed in O(|G′|) time by apply-
ing the combinatorial lemma of [1] to T (B′). Any
red arc β is associated with a unique leaf of T (B′),
which serves as an entry point for re-inserting β in
FVD(B′). The insertion of β may split an arc of B′

into two, in which case the entry point for β is an
artificial bisector.

Step 7 can be performed in time O(|G|), by keeping
the generation of new arcs bounded, i.e., by keeping
|G′| = O(|G|). To this goal, we use a specific merging
scheme, which ignores some of the merge curves. Our
merging scheme guarantees that (a) G′ contains all
the original arcs of V ′ and Gr′; and (b) the number
of new arcs created by merging is at most the number
of original arcs in V ′ and Gr′, which is O(|G|). In ad-
dition, the insertion of a crimson arc in Step 5 causes
at most one new arc. Thus, |G′| = O(|G|).

By the procedure of Steps 2 and 4, there exist con-
stants q1, q2 > 0 such that |B| ≤ q1|G|, |Gr| ≤ q2|G|,
and q1 + q2 < 1. The time complexity is T (m) ≤

T (q1m) + T (q2m) + O(m), where m = |G|. This im-
plies T (m) = O(m), see [1].

Theorem 4 Given Gmap(S), the FVD(S) can be
computed in additional O(h) time, where h is the
number of faces in FVD(S).

Theorem 4 applies also to updating a nearest-
neighbor segment Voronoi diagram after the deletion
of one site, and to computing the order-(k+1) subdivi-
sion within an order-k segment Voronoi region in time
proportional to the complexity of the related region.
We conjecture that it also applies to the respective
abstract Voronoi diagrams, which we are currently in-
vestigating with several results so far to the affirma-
tive. Note that the farthest abstract Voronoi diagram
can be constructed in expected O(n log n) time by a
randomized incremental construction [9], which is not
related to the randomized approach in this abstract.

References

[1] Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear-
time algorithm for computing the Voronoi diagram of
a convex polygon. Discrete Comput. Geom. 4, 591–
604 (1989)

[2] Aurenhammer, F., Drysdale, R., Krasser, H.: Far-
thest line segment Voronoi diagrams. Inform. Pro-
cess. Lett. 100, 220–225 (2006)

[3] Bohler, C., Cheilaris, P., Klein, R., Liu, C.H., Pa-
padopoulou, E., Zavershynskyi, M.: On the com-
plexity of higher order abstract Voronoi diagrams. In:
Proc. 40th ICALP. LNCS 7965, 208–219 (2013)

[4] Bohler, C., Klein, R., Liu, C.H.: Forest-like abstract
Voronoi diagrams in linear time. In: CCCG (2014)

[5] Chew, L.P.: Building Voronoi diagrams for convex
polygons in linear expected time. Tech. rep., Dart-
mouth College, Hanover, USA (1990)

[6] Chin, F., Snoeyink, J., Wang, C. A.: Finding the me-
dial axis of a simple polygon in linear time. Discrete
Comput. Geom., 21(3), 405–420 (1999)

[7] de Berg, M., Cheong, O., van Kreveld, M., Overmars,
M.: Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, 3rd edn. (2008)

[8] Klein, R., Lingas, A.: Hamiltonian abstract Voronoi
diagrams in linear time. In: Proc. 9th ISAAC. LNCS
834, 11–19 (1994)

[9] Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site
abstract Voronoi diagrams. Int. J. Comput. Geom.
Ap. 11(6), 583–616 (2001)

[10] Papadopoulou, E., Dey, S.: On the farthest line-
segment Voronoi diagram. Int. J. Comput. Geom.
Ap. 23(6), 443–460 (2013)

[11] Papadopoulou, E.: Net-aware critical area extraction
for opens in VLSI circuits via higher-order Voronoi
diagrams. IEEE T. CAD 30(5), 704–717 (2011)

[12] Papadopoulou, E., Zavershynskyi, M.: The higher-
order Voronoi diagram of line segments. Algorithmica
DOI 10.1007/s00453-014-9950-0 (2014)

255



EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

β-skeletons for a set of line segments in R2∗

Abstract

β-skeletons are well-known neighborhood graphs for a
set of points. We extend this notion to sets of line seg-
ments and present algorithms computing such skele-
tons for the entire range of β values. The main rea-
son for such an extension is a study of β-skeletons for
points moving along given line segments. We show
that relations between 1-skeleton (Gabriel Graph), 2-
skeleton (Relative Neighborhood Graph) and the De-
launay triangulation for sets of points hold also for
sets of segments. We present algorithms for comput-
ing circle and lune-based β-skeletons. We describe
an algorithm that for β ≥ 1 computes the β-skeleton
for a set S of n segments in the Euclidean plane in
O(n2α(n) log n) time in the circle-based case and in
O(n2λ4(n)) in the lune-based one, where the construc-
tion relies on the Delaunay triangulation for S. When
0 < β < 1, the β-skeleton can be constructed in a
O(n3λ4(n)) time.

1 Introduction

Our definition of the β-skeleton for line segments is
based on the following definition of the β-skeletons
for sets of points in the Euclidean space [9]:

Definition 1 [9] For a given set of points V =
{v1, v2, . . . , vn} in R2, a distance function d and pa-
rameter 0 < β < ∞ we define graph Gβ(V ) –
called a lune-based β-skeleton – as follows: two points
v′, v′′ ∈ V are connected with an edge if and only if no
point from V \ {v′, v′′} belongs to the set N(v′, v′′, β)
(neighborhood) where:

1. for 0 < β < 1, N(v′, v′′, β) is the intersection of

two discs, each of them has radius d(v′,v′′)
2β and

whose boundaries contain both v′ and v′′;

2. for 1 ≤ β < ∞, N(v′, v′′, β) is the intersection

of two discs, each with radius βd(v′,v′′)
2 , whose

centers are in points (β
2 )v′ + (1 − β

2 )v′′ and in

(1 − β
2 )v′ + (β

2 )v′′, respectively.

The region N(v′, v′′, β) is called a lune and points
v′, v′′ ∈ V are its generators.

∗This research is supported by the ESF EUROCORES pro-
gram EUROGIGA, CRP VORONOI.

Another form of β-neighborhoods has been studied
for β ≥ 1 (see for example [9]) leading to a different
family of β-skeletons called circle-based β-skeletons.
In this case, set N c(v′, v′′, β) is an union of two discs,

each with radius d(v′,v′′)
2β and having the segment v′v′′

as a chord.

Hurtado, Liotta and Meijer [8] presented an O(n2)
algorithm for the β-skeleton when β < 1. The lune-
based β-skeletons for 1 ≤ β ≤ 2 can be found in
O(n log n) time [12]. For β > 1, the circle-based β-
skeletons can be constructed in O(n log n) time too
[5]. But so far the fastest algorithm for computing the

lune-based β-skeletons for β > 2 runs in O(n
3
2 log

1
2 n)

time [10].

Geometric structures concerning a set of line seg-
ments, e.g. the Voronoi diagram [3, 11] or the straight
skeleton [1] are well-studied in the literature. Chew
and Kedem [4] defined the Delaunay triangulation for
line segments. Their definition was generalized by
Brévilliers et al. [2]. However, β-skeletons for a set
of line segments were completely unexplored. This
paper makes an initial effort to fill this gap.

Let us consider the case when we compute the β-
skeleton for a set of n points V where every point
v ∈ V is allowed to move along a straight-line segment
sv. Let S = {sv|v ∈ V }. For each pair of segments
sv1 , sv2 containing points v1, v2 ∈ V , respectively, we
want to find such positions of points v1 and v2 that
sv ∩N(v1, v2, β) = ∅ for any sv ∈ S \{s1, s2}. We will
attempt to solve this problem by defining a β-skeleton
for the set of line segments S.

Let S be a finite set of disjoint closed line segments
in a two-dimensional plane R2 with the Euclidean
metric and distance function d. We extend Definition
1 to define the β-skeleton for the set S.

Definition 2 Gβ(S) is a graph with n vertices corre-
sponding to the segments in S, and edges connecting
s′, s′′ ∈ S if and only if there exist points v′ ∈ s′

and v′′ ∈ s′′ such that s ∩ N(v′, v′′, β) = ∅ for any
s ∈ S \ {s′, s′′}.

Note that when segments degenerate to points, we
get the standard β-skeletons for point sets.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Preliminaries

Now, let the Delaunay triangulation DT (S) for the
set of line segments S be the graph (multigraph) dual
to the Voronoi diagram for S (see [2]). We assume
that the segments in S are in general position, i.e. no
three segment endpoints are collinear and no circle is
tangent to four segments.

Kirkpatrick and Radke [9] proved an important the-
orem connecting β-skeletons for a set of points V
with the Delaunay triangulation DT (V ) (RNG(V ) ⊆
GG(V ) ⊆ DT (V )).

Definitions of the β-skeleton and the Delaunay tri-
angulation for a set of line segments S preserve the
inclusions from this theorem. We define RNG(S)
(GG(S), respectively) as a lune-based 2-skeleton (1-
skeleton, respectively).

Theorem 1 Let us assume that line segments in S
are in general position and let Gβ(S) (Gc

β(S), respec-
tively) denote the lune-based (circle-based, respec-
tively) β-skeleton for a set S. For 1 ≤ β < β′ following
inclusions hold true: Gβ′(S) ⊆ Gβ(S) ⊆ GG(S) ⊆
DT (S) (Gc

β′(S) ⊆ Gc
β(S) ⊆ GG(S) ⊆ DT (S), re-

spectively).

Proof. First we prove that GG(S) ⊆ DT (S). Let
v1 ∈ s1, v2 ∈ s2 be such a pair of points that there ex-
ists a disc D with diameter v1v2 containing no points
belonging to segments from S \ {s1, s2} inside of it.
We transform D by homothety with respect to v1 so
that its image D′ could be tangent to s2 in the point
t. Then we transform D′ by homothety with respect
to t so that its image D′′ is tangent to s1 (see Figure
1). The disc D′′ lies inside of D, i.e. it does not in-
tersect segments from S \ {s1, s2}, and is tangent to
s1 and s2. Hence, if the edge s1s2 belongs to GG(S)
then it also belongs to DT (S).

Let c1, c2 be centers of discs determining a lune N ∈
N(s1, s2, β). Let c′

1 (c′
2, respectively) be an image

of c1 (c2, respectively) by homothety with the factor
β′

β with respect to point v1 (v2, respectively). Then

c′
1, c

′
2 are centers of discs determining a lune N ′ ∈

N(s1, s2, β
′) and N ⊆ N ′. Hence Gβ′(S) ⊆ Gβ(S).

The sequence of inclusions for circle-based β-
skeletons is a straightforward consequence of fact that
two different circles have at most two intersection
points.

�

3 Algorithm computing β-skeletons for 0 < β < 1

Let S be a set of n disjoint line segments in the Eu-
clidean plane.

Observation 1 For a given parameter 0 < β < 1 if
v is a point from the boundary of a lune N(v1, v2, β),

s2

v1

v2

s1

t

D

D’

D"

Figure 1: GG(S) ⊆ DT (S).

different than v1 and v2, then an angle ∠v1vv2 has a
constant measure which depends only on β.

Let us consider a set of parametrized lines contain-
ing given segments. A line P (si) contains a segment
si ∈ S and has parametrization qi(ti) = (xi

1, y
i
1) +

ti [̇x
i
2−xi

1, y
i
2−yi

1], where (xi
1, y

i
1) and (xi

2, y
i
2) are ends

of the segment si and ti ∈ R.
Let s1 and s2 be generators of a lune and δ be the

measure of an inscribed angle defining a lune for a
given value of β. The main idea of the algorithm is as
follows. For any point v1 ∈ P (s1) we compute points
v2 ∈ P (s2) for which there exists a point v ∈ P (s),
where s ∈ S \{s1, s2}, such that δ ≤ ∠v1vv2 ≤ 2π−δ,
i.e. v ∈ N(v1, v2, β) (see Figure 2). Then we analyze
an union of results for all s ∈ S\{s1, s2}. If it contains
all pairs of points (v1, v2), where v1 ∈ s1 and v2 ∈ s2,
then (s1, s2) /∈ Gβ(S).

For a given t1 ∈ R we shoot rays from a point
v1 = q1(t1) ∈ P (s1) towards P (s). Let us assume that
a given ray intersects some segment s ∈ S \{s1, s2} in
a point v = q(t) for some value of t ∈ R. Let w(t) =
v⃗1v be the vector between points v1 and v. Then
w(t) = [A1t+B1t1+C1, A2t+B2t1+C2] where coeffi-
cients Ai, Bi, Ci for i = 1, 2 depend only on endpoints
coordinates of segments s1 and s. The ray refracts in
v from the segment s in a such way that the angle be-
tween directions of incidence and refraction of the ray
is equal to the angle δ. The parametrized equation of
the refracted ray is r(z, t) = v+z ·Rδw(t) for z ≥ 0 (or
r(z, t) = v + z · R′

δw(t) for z ≥ 0, respectively) where
Rδ (R′

δ, respectively) denotes a rotation matrix for a
clockwise (counter-clockwise, respectively) angle δ. If
refracted ray r(z, t) intersects line P (s2) in a point
q2(t2) = r(z, t) (it is not always possible - see Fig-

ure 2) then we get t2(t) = M ·t2+p1(t1)·t+p2(t1)
N ·t+p3(t1)

, where

p1, p2 and p3 are (at most quadratic) polynomials of
variable t1 and M, N are fixed.

Note that if we consider clockwise and counter-
clockwise refraction separately then for a given point
q1(t1) and a given segment s, the graph of function
t2 with respect to t consists of parts of a hyperbola.
We analyze a graph of correlations between variables
t and t2 (i.e. a set of pairs (t, t2(t)) for fixed t1) for
both kinds of refractions - see Figure 2.

Let T (t1, s, s2) be a set of all t2 such that, for
given t1, points q1(t1) and q2(t2) generate a lune inter-
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t 2

P(s  )1

s1

q  (t  )1 1

P(s  )2

s 2a)

t
P(s)

c

s

s 2

s1
q  (t  )1 1

t 2

P(s  )1

P(s  )2

b)

t

s

P(s)

c

Figure 2: Examples of correlation between parame-
ters t and t2 (for fixed t1) for (a) a refraction angle
near to π (the arc with arrows shows, where for given
ray direction are located points, which define a lune
containing the refraction point) and (b) near to π

2 .
The value c corresponds to the intersection point of
lines P (s) and P (s2). Dotted line shows a situation
when a line containing a refracted ray intersects P (s2)
but the ray itself does not.

sected by segment s. Let F (s1, s, s2) =
∪

t1∈R{t1} ×
T (t1, s, s2) be a set of pairs of parameters (t1, t2) such
that some segment s intersects a lune generated by
segments s1 and s2. The set F (s1, s, s2) is an area
limited by O(1) algebraic curves of degree at most 3
(i.e. hyperbolas for t = 0 and t = 1 and envelopes of
a set of hyperbolas for 0 < t < 1, see Figure 3).

Lemma 2 The edge s1, s2 belongs to the β-skeleton
Gβ(S) if and only if
[0, 1] × [0, 1] \ ∪

s∈S\{s1,s2} F (s1, s, s2) ̸= ∅.

Proof. If [0, 1] × [0, 1] \ ∪
s∈S\{s1,s2} F (s1, s, s2) ̸= ∅

then there exists a pair of parameters (t1, t2) ∈ [0, 1]×
[0, 1] such that a lune generated by points q1(t1) ∈ s1

and q2(t2) ∈ s2 is not intersected by any segment
s ∈ S \ {s1, s2}, i.e. (s1, s2) ∈ Gβ(S). The opposite
implication can be proved in the same way. �

Theorem 3 For 0 < β < 1 the β-skeleton Gβ(S) can
be found in O(n3λ4(n)) time, where λ4(n) denotes
the maximum possible length of a (n, 4) Davenport-
Schinzel sequence.

Proof. We analyze O(n2) pairs of line segments.
For each pair of segments s1, s2 we compute∪

s∈S\{s1,s2} F (s1, s, s2). For each s ∈ S \ {s1, s2}
we find a set of pairs of parameters t1, t2 such
that N(q1(t1), q2(t2), β) ∩ s ̸= ∅. The arrange-
ment of n − 2 curves in total can be found in
O(n2λ4(n)) time [6]. Then the difference [0, 1]×[0, 1]\∪

s∈S\{s1,s2} F (s1, s, s2) can be found in O(n2) time.

Therefore we can verify which edges belong to Gβ(S)
in O(n3λ4(n)) time. �

t1

t 2

t1

t 2

t=0

t=1

t=0

t=1

t=0

t=1

t=0

t=1

b)a)

Figure 3: Examples of sets F (s1, s, s2) for β near to
(a) 0 and (b) 1. Parameter t is considered for clock-
wise and counterclockwise refractions.

4 Finding β-skeletons for 1 ≤ β

According to Theorem 1, for 1 ≤ β we have to con-
sider only O(n) pairs of line segments in S (the pairs
corresponding to edges of DT (S)). First we con-
sider lune-based β-skeletons. We will analyze pairs
of points belonging to given segments s1, s2 ∈ S
which generate discs intersected by any segment s ∈
S \ {s1, s2}.

Let C1(v1, v2, β) be the circle creating the lune
N(v1, v2, β) and containing the point v1, where v1 ∈
s1, v2 ∈ s2. Let u be such a point that the segment
v1u is the diameter of the circle C1(v1, v2, β). If the
line P (s) intersects the arc N(v1, v2, β)∩C1(v1, v2, β)
in the point v, then ∠v1vu = π

2 . Let h be a homoth-

ety with center in v1 and ratio |v1v2|
|v1u| = 1

β and let line

P ′(s) be the image of P (s) in this homothety.

Lemma 4 For a given β ≥ 1, points v1 ∈ P (s1), v2 ∈
P (s2) and the segment s ∈ S \ {s1, s2}, the line P (s)
intersects the arc N(v1, v2, β) ∩ C1(v1, v2, β) in the
point v if and only if ∠v1h(v)v2 = π

2 .

The algorithm computing a lune-based β-skeleton
for β ≥ 1 is very similar to the one presented in the
previous section. We consider a line P ′(s) which is a
homothetic image of the line P (s) with ratio 1

β and

center q1(t1) (in the next step of the algorithm the
same is done for q2(t2)). The ray shot from q1(t1)
refracts on P ′(s) at a right angle. In this case for
a fixed t1 we analyze only one hyperbola (functions
for clockwise and counterclockwise refractions are the
same). However, sets F (s1, s, s2) and F (s2, s, s1) are
different (discs creating a lune intersect segment s in
different way). Therefore, we have to intersect those
sets to obtain a set of pairs of points generating lunes
intersected by s.

Theorem 5 For β ≥ 1 the lune-based β-skeleton
Gβ(S) can be found in O(n2λ4(n)) time, where λ4(n)
denotes the maximum possible length of a (n, 4)
Davenport-Schinzel sequence.

Proof. β-skeletons for β ≥ 1 satisfy inclusions of
Theorem 1. Hence, the number of tested edges is lin-
ear. For each such pair of segments s1, s2 we compute
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the corresponding sets of pairs of points generating
lunes that do not intersect segments from S \{s1, s2}.
Similarly as in Theorem 3 we can do it in O(nλ4(n))
time. Therefore, a total time complexity of the al-
gorithm (after analysis of O(n) pairs segments) is
O(n2λ4(n)). �

The algorithm for computing circle-based β-
skeletons for β ≥ 1 is almost the same as the algo-
rithm for β < 1.

Theorem 6 For β ≥ 1 the circle-based β-skeleton
Gc

β(S) can be found in O(n2α(n) log n) time, where
α(n) is the inverse Ackermann function.

Proof. In this case, for any pair s1, s2 ∈ S the num-
ber of connected components of the set [0, 1] × [0, 1] \∪

s∈S\{s1,s2} F (s1, s, s2) is O(n) and for any t1 there
is at most one connected component that contains
points with the same t1 coordinate. For each edge
we use Hershberger’s algorithm [7] to compute inter-
section of the complements of sets containing pairs of
points generating not empty neighborhoods. We find
the lower envelope of curves intersecting upper edge
of the square [0, 1] × [0, 1] and the upper envelope of
curves intersecting lower edge of the square. Then
we intersect sets limited by those envelopes. It needs
O(nα(n) log n) time. Hence, the total time complex-
ity of the algorithm is O(n2α(n) log n). �

5 Conclusion

The running time of the presented algorithms for β-
skeletons for sets of n line segments ranges between
O(n2α(n) log n) and O(n3λ4(n)) and depends on the
value of β. However, we can compute the Gabriel
Graph GG(S) in O(n log n) time. The algorithm re-
lies on the fact that the 2-order Voronoi diagram and
the 3-order Voronoi diagram for S can be found in
O(n log n) time [11].

The existence of this algorithm suggests that it
may be possible to find a faster way to compute
β-skeletons for other values of β, especially for
1 ≤ β ≤ 2.
The algorithms shown in this work for each pair
of segments find such a position of generators
that the corresponding lune does not intersect any
other segment. We can consider a problem in
which we look for an arrangement of all generators
satisfying this condition at the same time. Then
the method described in the paper can also be
used. We analyze n-dimensional space and test if
[0, 1]n \ ∪

si,sj∈S,s∈S\{si,sj} F (si, s, sj) × Rn−2 ̸= ∅,
where i and j also define corresponding coordinates
in Rn. Unfortunately, such an algorithm is expensive.
Is there a more effective algorithm for this problem
? Additional interesting questions about β-skeletons
are related to their connections with k-order Voronoi

diagrams for line segments.
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